Skip to main content

Soda Ocean Hypothesis

  • Reference work entry

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

The “soda ocean hypothesis” (SOH) stands for the concept of an early (i.e., in essence Precambrian) alkaline or even highly “alkaline ocean,” in analogy to the chemistry of the present-day “soda lakes.”

Soda ocean hypothesis (SOH)

The SOH has been advanced in biology (e.g., Snyder and Fox, 1975) for biochemical reasons before it was developed in earth sciences for geochemical reasons (Kempe and Degens, 1985; Kempe et al., 1989; Kempe and Kazmierczak, 1994).

In biology, the SOH rests on the observations that certain reactions considered essential for biogenesis would be favored by alkaline conditions (e.g., Abelson, 1966). One of those is the experimental observation that peptide bonds are more stable in alkaline than in acidic environments (e.g., Dose and Rauchfuss, 1972).

In earth sciences, the SOH rests on elemental mass balances, thermodynamic and kinetic arguments, and the analogy to modern soda lakes. These arguments are in short:

  1. 1....

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  • Abelson, P. H., 1966. Chemical events on the primitive Earth. Proceedings of the National Academy of Sciences USA, 55, 1365–1372.

    Article  Google Scholar 

  • Altermann, W., Kazmierczak, J., Oren, A., and Wright, D. T., 2006. Cyanobacterial calcification and its rock-building potential during 3.5 billion years of earth history. Geobiology, 4, 147–166.

    Article  Google Scholar 

  • Arp, G., Reimer, A., and Reitner, J., 2001. Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans. Science, 292, 1701–1704.

    Article  Google Scholar 

  • Bahlburg, G., and Breitkreuz, C., 1998. Grundlagen der Geologie. Stuttgart: F. Enke.

    Google Scholar 

  • Bau, M., and Möller, P., 1994. Präkambrische chemisch-sedimentäre Mineralisationen. Geowissenschaften, 12, 333–336.

    Google Scholar 

  • Brennan, S. T., Lowenstein, T. K., and Horita, J., 2004. Seawater chemistry and the advent of biocalcification. Geology, 32, 473–476.

    Article  Google Scholar 

  • Carafoli, E., 1987. Intracellular calcium homeostasis. Annual Review of Biochemistry, 56, 395–433.

    Article  Google Scholar 

  • Degens, E. T., 1989. Perspectives on Biogeochemistry. Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Dose, K., and Rauchfuss, H., 1972. On the electrophoretic behavior of thermal polymers of amino acids. In Rohlfing, D. L., Oparin, A. I. (eds.), Molecular Evolution: Prebiological and Biological. New York: Plenum Press, pp. 1–199.

    Google Scholar 

  • Einsele, G., 1992. Sedimentary Basins. Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Garrels, R. M., and Mackenzie, F. T., 1967. Origin of the chemical composition of some springs and lakes. In Equilibrium Concepts of Natural Water Systems. Advances in Chemistry, 67. American Chemical Society, pp. 222–242.

    Google Scholar 

  • Ginsburg, R. N., 1991. Controversies about stromatolites: Vices and virtues. In Müller, D. W., McKenzie, J. A., and Weissert, H. (eds.), Controversies in Modern Geology. London: Academic Press, pp. 25–36.

    Google Scholar 

  • Grotzinger, J. P., 1990. Geochemical model for Proterozoic stromatolite decline. In Knoll, A. H., and Ostrom, J. H. (eds.), Proterozoic Evolution and Environments, American Journal of Science (P. E. Cloud Special Volume), 290-A, pp. 80–104.

    Google Scholar 

  • Grotzinger, J. P., and Kasting, J. F., 1993. New constraints on Precambrian ocean composition. Journal of Geology, 101, 235–243.

    Article  Google Scholar 

  • Hartmann, J., Kempe, S., Dürr, H. H., and Jansen, N., 2009. Global CO2-consumption by chemical weathering: What is the contribution of highly active weathering regions? Global and Planetary Change, 69, 185–194.

    Article  Google Scholar 

  • Kazmierczak, J., and Kempe, S., 2004. Calcium build-up in the Precambrian sea: A major promoter in the evolution of eukaryotic life. In Seckbach, J. (ed.), Origins, Evolution and Biodiversity of Microbial Life. Dordrecht: Kluwer, pp. 329–345.

    Google Scholar 

  • Kazmierczak, J., and Kempe, S., 2006. Modern analogues of Precambrian stromatolites from caldera lakes of Niuafo‘ou Island, Tonga. Naturwissenschaften, 93, 119–126.

    Article  Google Scholar 

  • Kempe, S., and Degens, E. T., 1985. An early soda ocean? Chemical Geology, 53, 95–108.

    Article  Google Scholar 

  • Kempe, S., and Kazmierczak, J., 1990. Calcium carbonate supersaturation and the formation of in situ calcified stromatolites. In Ittekkot, V. A., Kempe, S., Michaelis, W., and Spitzy, A. (eds.), Facets of Modern Biogeochemistry Festschrift for E.T. Degens on occasion of his 60th birthday, Berlin: Springer-Verlag, pp 255–278.

    Chapter  Google Scholar 

  • Kempe, S., and Kazmierczak, J., 1994. The role of alkalinity in the evolution of ocean chemistry, organization of living systems and biocalcification processes. In Doumenge, F. (ed.), Past and Present Biomineralization Processes. Considerations about the Carbonate Cycle. Monaco: Bulletin de l’Institut océanographique, no. spec. 13, pp. 61–117.

    Google Scholar 

  • Kempe, S., and Kazmierczak, J., 1997. A terrestrial model for an alkaline martian hydrosphere. Planetary and Space Science, 45, 1493–1499.

    Article  Google Scholar 

  • Kempe, S., and Kazmierczak, J., 2003. Modern soda lakes: Model environments for an early alkaline ocean. In Müller, T., and Müller, H. (eds.), Modelling in Natural Sciences; Design, Validation and Case Studies. Berlin: Springer-Verlag, pp. 309–322.

    Google Scholar 

  • Kempe, S., and Kazmierczak, J., 2007. Hydrochemical key to the genesis of calcareous non-laminated and laminated cyanobacterial microbialites. In Seckbach, J. (ed.), Algae and Cyanobacteria in Extreme Environments. Berlin: Springer-Verlag, pp. 241–264.

    Google Scholar 

  • Kempe, S., and Pegler, K., 1991. Sinks and sources of CO2 in coastal seas: the North Sea. Tellus, 43B, 224–235.

    Google Scholar 

  • Kempe, S., Kazmierczak, J., and Degens, E. T., 1989. The soda ocean concept and its bearing on biotic and crustal evolution. In Crick, R. E. (ed.), Origin, Evolution and Modern Aspects of Biomineralization in Plants and Animals Proceedings of the 5th International Symposium Biomineralization, Arlington, Texas, May, 1986, New York: Plenum Press, pp. 29–43.

    Google Scholar 

  • Kempe, S., Kazmierczak, J., Landmann, G., Konuk, T., Reimer, A., and Lipp, A., 1991. Largest known microbialites discovered in Lake Van, Turkey. Nature, 349, 605–608.

    Article  Google Scholar 

  • Kretsinger, R. H., 1977. Evolution of the informational role of calcium in eukaryotes. In Wasserman, R. H., Corradino, R. A., Kretsinger, R. H., MacLennan, D. H., and Siegel, F. L. (eds.), Calcium Binding Proteins and Calcium Function. New York: North Holland Publishing, pp. 63–7.

    Google Scholar 

  • Kretsinger, R. H., 1983. A comparison of the roles of calcium in biomineralization and in cytosolic signaling. In Westbroek, P., and De Jong, E. W. (eds.), Biomineralization and Biological Metal Accumulation. Dordrecht: D. Reidel Publishing Co., pp. 123–131.

    Chapter  Google Scholar 

  • López-Garcia, P., Kazmierczak, J., Benzerara, K., Kempe, S., Guyot, F., and Moreira, D., 2005. Bacterial diversity and carbonate precipitation in the microbialites of the highly alkaline Lake Van, Turkey. Extremophiles, 9, 263–274.

    Article  Google Scholar 

  • Möller, P., and Bau, M., 1993. Rare-earth patterns with positive cerium anomaly in alkaline waters from Lake Van, Turkey. Earth and Planetary Science Letters, 117, 671–676.

    Article  Google Scholar 

  • Morse, J. W., and Mackenzie, F. T., 1998. Hadean ocean carbonate geochemistry. Aquatic Geochemistry, 4, 301–319.

    Article  Google Scholar 

  • Pegler, K., and Kempe, S., 1988. The carbonate system of the North Sea: Determination of alkalinity and TCO2 and calculation of PCO2 and SIcal (Spring 1986). In Kempe, S., Liebezeit, G., Dethlefsen, V., and Harms, U. (eds.), Biogeochemistry and Distribution of Suspended Matter in the North Sea and Implications to Fisheries Biology, Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg, SCOPE/UNEP Sonderband, 65, pp. 35–87.

    Google Scholar 

  • Petrychenko, O. Y., Peryt, T. M., and Chechel, E. I., 2005. Early Cambrian water chemistry from fluid inclusions in halite from Siberian evaporates. Chemical Geology, 219, 149–161.

    Article  Google Scholar 

  • Riding, R., 2000. Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology, 47, 179–214.

    Article  Google Scholar 

  • Ries, J. B., Anderson, M. A., and Hill, R. T., 2008. Seawater Mg/Ca controls polymorph mineralogy of microbial CaCO3: A potential for calcite-aragonite seas in Precambrian time. Geobiology, 6, 106–119.

    Article  Google Scholar 

  • Snyder, W. D., and Fox, S. W., 1975. A model for the origin of stable protocells in a primitive alkaline ocean. Biosystems, 7, 222–229.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Kempe, S., Kazmierczak, J. (2011). Soda Ocean Hypothesis. In: Reitner, J., Thiel, V. (eds) Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9212-1_192

Download citation

Publish with us

Policies and ethics