Encyclopedia of Geobiology

2011 Edition
| Editors: Joachim Reitner, Volker Thiel

Soda Ocean Hypothesis

  • Stephan Kempe
  • Jozef Kazmierczak
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-9212-1_192


The “soda ocean hypothesis” (SOH) stands for the concept of an early (i.e., in essence Precambrian) alkaline or even highly “alkaline ocean,” in analogy to the chemistry of the present-day “soda lakes.”

Soda ocean hypothesis (SOH)

The SOH has been advanced in biology (e.g., Snyder and Fox, 1975) for biochemical reasons before it was developed in earth sciences for geochemical reasons (Kempe and Degens, 1985; Kempe et al., 1989; Kempe and Kazmierczak, 1994).

In biology, the SOH rests on the observations that certain reactions considered essential for biogenesis would be favored by alkaline conditions (e.g., Abelson, 1966). One of those is the experimental observation that peptide bonds are more stable in alkaline than in acidic environments (e.g., Dose and Rauchfuss, 1972).

In earth sciences, the SOH rests on elemental mass balances, thermodynamic and kinetic arguments, and the analogy to modern soda lakes. These arguments are in short:
  1. 1.

    A CO2-rich atmosphere in the...


Saturation Index Soda Lake Early Ocean PCO2 Atmosphere Divalent Earth Alkaline 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Abelson, P. H., 1966. Chemical events on the primitive Earth. Proceedings of the National Academy of Sciences USA, 55, 1365–1372.CrossRefGoogle Scholar
  2. Altermann, W., Kazmierczak, J., Oren, A., and Wright, D. T., 2006. Cyanobacterial calcification and its rock-building potential during 3.5 billion years of earth history. Geobiology, 4, 147–166.CrossRefGoogle Scholar
  3. Arp, G., Reimer, A., and Reitner, J., 2001. Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans. Science, 292, 1701–1704.CrossRefGoogle Scholar
  4. Bahlburg, G., and Breitkreuz, C., 1998. Grundlagen der Geologie. Stuttgart: F. Enke.Google Scholar
  5. Bau, M., and Möller, P., 1994. Präkambrische chemisch-sedimentäre Mineralisationen. Geowissenschaften, 12, 333–336.Google Scholar
  6. Brennan, S. T., Lowenstein, T. K., and Horita, J., 2004. Seawater chemistry and the advent of biocalcification. Geology, 32, 473–476.CrossRefGoogle Scholar
  7. Carafoli, E., 1987. Intracellular calcium homeostasis. Annual Review of Biochemistry, 56, 395–433.CrossRefGoogle Scholar
  8. Degens, E. T., 1989. Perspectives on Biogeochemistry. Berlin: Springer-Verlag.CrossRefGoogle Scholar
  9. Dose, K., and Rauchfuss, H., 1972. On the electrophoretic behavior of thermal polymers of amino acids. In Rohlfing, D. L., Oparin, A. I. (eds.), Molecular Evolution: Prebiological and Biological. New York: Plenum Press, pp. 1–199.Google Scholar
  10. Einsele, G., 1992. Sedimentary Basins. Berlin: Springer-Verlag.CrossRefGoogle Scholar
  11. Garrels, R. M., and Mackenzie, F. T., 1967. Origin of the chemical composition of some springs and lakes. In Equilibrium Concepts of Natural Water Systems. Advances in Chemistry, 67. American Chemical Society, pp. 222–242.Google Scholar
  12. Ginsburg, R. N., 1991. Controversies about stromatolites: Vices and virtues. In Müller, D. W., McKenzie, J. A., and Weissert, H. (eds.), Controversies in Modern Geology. London: Academic Press, pp. 25–36.Google Scholar
  13. Grotzinger, J. P., 1990. Geochemical model for Proterozoic stromatolite decline. In Knoll, A. H., and Ostrom, J. H. (eds.), Proterozoic Evolution and Environments, American Journal of Science (P. E. Cloud Special Volume), 290-A, pp. 80–104.Google Scholar
  14. Grotzinger, J. P., and Kasting, J. F., 1993. New constraints on Precambrian ocean composition. Journal of Geology, 101, 235–243.CrossRefGoogle Scholar
  15. Hartmann, J., Kempe, S., Dürr, H. H., and Jansen, N., 2009. Global CO2-consumption by chemical weathering: What is the contribution of highly active weathering regions? Global and Planetary Change, 69, 185–194.CrossRefGoogle Scholar
  16. Kazmierczak, J., and Kempe, S., 2004. Calcium build-up in the Precambrian sea: A major promoter in the evolution of eukaryotic life. In Seckbach, J. (ed.), Origins, Evolution and Biodiversity of Microbial Life. Dordrecht: Kluwer, pp. 329–345.Google Scholar
  17. Kazmierczak, J., and Kempe, S., 2006. Modern analogues of Precambrian stromatolites from caldera lakes of Niuafo‘ou Island, Tonga. Naturwissenschaften, 93, 119–126.CrossRefGoogle Scholar
  18. Kempe, S., and Degens, E. T., 1985. An early soda ocean? Chemical Geology, 53, 95–108.CrossRefGoogle Scholar
  19. Kempe, S., and Kazmierczak, J., 1990. Calcium carbonate supersaturation and the formation of in situ calcified stromatolites. In Ittekkot, V. A., Kempe, S., Michaelis, W., and Spitzy, A. (eds.), Facets of Modern Biogeochemistry Festschrift for E.T. Degens on occasion of his 60th birthday, Berlin: Springer-Verlag, pp 255–278.CrossRefGoogle Scholar
  20. Kempe, S., and Kazmierczak, J., 1994. The role of alkalinity in the evolution of ocean chemistry, organization of living systems and biocalcification processes. In Doumenge, F. (ed.), Past and Present Biomineralization Processes. Considerations about the Carbonate Cycle. Monaco: Bulletin de l’Institut océanographique, no. spec. 13, pp. 61–117.Google Scholar
  21. Kempe, S., and Kazmierczak, J., 1997. A terrestrial model for an alkaline martian hydrosphere. Planetary and Space Science, 45, 1493–1499.CrossRefGoogle Scholar
  22. Kempe, S., and Kazmierczak, J., 2003. Modern soda lakes: Model environments for an early alkaline ocean. In Müller, T., and Müller, H. (eds.), Modelling in Natural Sciences; Design, Validation and Case Studies. Berlin: Springer-Verlag, pp. 309–322.Google Scholar
  23. Kempe, S., and Kazmierczak, J., 2007. Hydrochemical key to the genesis of calcareous non-laminated and laminated cyanobacterial microbialites. In Seckbach, J. (ed.), Algae and Cyanobacteria in Extreme Environments. Berlin: Springer-Verlag, pp. 241–264.Google Scholar
  24. Kempe, S., and Pegler, K., 1991. Sinks and sources of CO2 in coastal seas: the North Sea. Tellus, 43B, 224–235.Google Scholar
  25. Kempe, S., Kazmierczak, J., and Degens, E. T., 1989. The soda ocean concept and its bearing on biotic and crustal evolution. In Crick, R. E. (ed.), Origin, Evolution and Modern Aspects of Biomineralization in Plants and Animals Proceedings of the 5th International Symposium Biomineralization, Arlington, Texas, May, 1986, New York: Plenum Press, pp. 29–43.Google Scholar
  26. Kempe, S., Kazmierczak, J., Landmann, G., Konuk, T., Reimer, A., and Lipp, A., 1991. Largest known microbialites discovered in Lake Van, Turkey. Nature, 349, 605–608.CrossRefGoogle Scholar
  27. Kretsinger, R. H., 1977. Evolution of the informational role of calcium in eukaryotes. In Wasserman, R. H., Corradino, R. A., Kretsinger, R. H., MacLennan, D. H., and Siegel, F. L. (eds.), Calcium Binding Proteins and Calcium Function. New York: North Holland Publishing, pp. 63–7.Google Scholar
  28. Kretsinger, R. H., 1983. A comparison of the roles of calcium in biomineralization and in cytosolic signaling. In Westbroek, P., and De Jong, E. W. (eds.), Biomineralization and Biological Metal Accumulation. Dordrecht: D. Reidel Publishing Co., pp. 123–131.CrossRefGoogle Scholar
  29. López-Garcia, P., Kazmierczak, J., Benzerara, K., Kempe, S., Guyot, F., and Moreira, D., 2005. Bacterial diversity and carbonate precipitation in the microbialites of the highly alkaline Lake Van, Turkey. Extremophiles, 9, 263–274.CrossRefGoogle Scholar
  30. Möller, P., and Bau, M., 1993. Rare-earth patterns with positive cerium anomaly in alkaline waters from Lake Van, Turkey. Earth and Planetary Science Letters, 117, 671–676.CrossRefGoogle Scholar
  31. Morse, J. W., and Mackenzie, F. T., 1998. Hadean ocean carbonate geochemistry. Aquatic Geochemistry, 4, 301–319.CrossRefGoogle Scholar
  32. Pegler, K., and Kempe, S., 1988. The carbonate system of the North Sea: Determination of alkalinity and TCO2 and calculation of PCO2 and SIcal (Spring 1986). In Kempe, S., Liebezeit, G., Dethlefsen, V., and Harms, U. (eds.), Biogeochemistry and Distribution of Suspended Matter in the North Sea and Implications to Fisheries Biology, Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg, SCOPE/UNEP Sonderband, 65, pp. 35–87.Google Scholar
  33. Petrychenko, O. Y., Peryt, T. M., and Chechel, E. I., 2005. Early Cambrian water chemistry from fluid inclusions in halite from Siberian evaporates. Chemical Geology, 219, 149–161.CrossRefGoogle Scholar
  34. Riding, R., 2000. Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology, 47, 179–214.CrossRefGoogle Scholar
  35. Ries, J. B., Anderson, M. A., and Hill, R. T., 2008. Seawater Mg/Ca controls polymorph mineralogy of microbial CaCO3: A potential for calcite-aragonite seas in Precambrian time. Geobiology, 6, 106–119.CrossRefGoogle Scholar
  36. Snyder, W. D., and Fox, S. W., 1975. A model for the origin of stable protocells in a primitive alkaline ocean. Biosystems, 7, 222–229.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Stephan Kempe
    • 1
  • Jozef Kazmierczak
    • 2
  1. 1.Department of Physical Geology and Global Cycles Institute for Applied GeosciencesUniversity of TechnologyDarmstadtGermany
  2. 2.Institute of PaleobiologyPolish Academy of SciencesWarszawaPoland