Encyclopedia of Geobiology

2011 Edition
| Editors: Joachim Reitner, Volker Thiel

Soda Lakes

  • Stephan Kempe
  • Jozef Kazmierczak
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-9212-1_191

Definition

The term “soda lake” designates a class of lakes with waters showing an excess of the total alkalinity (TA ≅ [HCO 3 ] + 2[CO 3 2−], i.e., the sum of the charges of the bicarbonate ion plus carbonate ion) over the charges of the alkaline earth ions magnesium and calcium:
$$[{{\rm HCO}_3} ^ {-} ] + 2[{\rm CO}_3 ^{2 -} ] > 2[{\rm Mg}^{2 +} ] + 2[{\rm Ca}^{2 +} ].$$

Keywords

Saturation Index Crater Lake Soda Lake East African Rift Lake Surface Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Bibliography

  1. Arp, G., Thiel, V., Reimer, A., Michaelis, W., and Reitner, J., 1999. Biofilm exopolymers control microbialite formation at thermal springs discharging into the alkaline Pyramid Lake, Nevada, USA. Sedimentary Geology, 126, 159–196.CrossRefGoogle Scholar
  2. Benson, L. V., 1994. Carbonate deposition, Pyramid Lake subbasin, Nevada: 1. Sequence of formation and elevational distribution of carbonate deposits (tufas). Palaeogeography, Palaeoecology Palaeoclimatology, 109, 55–87.CrossRefGoogle Scholar
  3. Bischoff, J. L., Stine, S., Rosenbauer, R. J., Fitzpatrick, J. A., and Stafford, T. W., 1993. Ikaite precipitation by mixing of shoreline springs and lake water, Mono Lake, California, USA. Geochimica et Cosmochimica Acta, 57, 3855–3865.CrossRefGoogle Scholar
  4. Donachie, S. P., Hou, S., Lee, K. S., Riley, C. W., Pikina, A., Kempe, S., Gregory, T. G., Bossuyt, A., Boerema, J., Liu, J., Freias, T. A., Malahoff, A., and Alam, M., 2004. The Hawaiian Archipelago: a microbial diversity hotspot. Microbial Ecology, 48, 509–520.CrossRefGoogle Scholar
  5. Eugster, H. P., 1986. Lake Magadi, Kenya: a model for rift valley hydrochemistry and sedimentation? In Frostick, L. E. et al., (eds.), Sedimentation in the African Rifts. London: Geological Society, Special Publications 25, pp. 177–189.Google Scholar
  6. Eugster, H. P., and Hardie, L. A., 1978. Lake Magadi, Kenya: a model for rift valley hydrochemistry and sedimentation? In Lerman, A. (ed.), Physics and Chemistry of Lakes, New York: Springer, pp. 237–293.Google Scholar
  7. Garrels, R. M., and Mackenzie, F. T., 1967. Origin of the chemical composition of some springs and lakes. In equilibrium concepts of natural water systems. American Chemical Society Advances in Chemistry, 67, 222–242.CrossRefGoogle Scholar
  8. Garret, D. E., 1992. Natural Soda Ash, Occurrences, Processing, and Use. New York: Van Nostrand Reinhold.Google Scholar
  9. Kazmierczak, J., and Kempe, S., 2006. Modern analogues of Precambrian stromatolites from caldera lakes of Niuafo‘ou Island, Tonga. Naturwissenschaften, 93, 119–126.CrossRefGoogle Scholar
  10. Kazmierczak, J., Kempe, S., and Altermann, W., 2004. Microbial origin of Precambrian carbonates: lessons from modern analogues. In Eriksson, P., Altermann, W., Nelson, D., Mueller, W., and Catuneanu, O. (eds.), The Precambrian Earth: Tempos and Events. Amsterdam: Elsevier, pp. 545–564.Google Scholar
  11. Kempe, S., 1990. Alkalinity: the link between anaerobic basins and shallow water carbonates? Naturwissenschaften, 77, 426–427.CrossRefGoogle Scholar
  12. Kempe, S., and Degens, E. T., 1985. An early soda ocean? Chemical Geology, 53, 95–108.CrossRefGoogle Scholar
  13. Kempe, S., and Kazmierczak, J., 1990. Calcium carbonate supersaturation and the formation of in situ calcified stromatolites. In Ittekkot, V. A., Kempe, S., Michaelis, W., and Spitzy, A. (eds.), Facets of Modern Biogeochemistry, (Festschrift for E.T. Degens). Berlin: Springer-Verlag, pp. 255–278.CrossRefGoogle Scholar
  14. Kempe, S., and Kazmierczak, J., 1993. Satonda Crater Lake, Indonesia: Hydrogeochemistry and biocarbonates. Facies, 28, 1–32.CrossRefGoogle Scholar
  15. Kempe, S., and Kazmierczak, J., 1994. The role of alkalinity in the evolution of ocean chemistry, organization of living systems and biocalcification processes. In Doumenge, F. (ed.), Past and Present Biomineralization Processes. Considerations about the Carbonate Cycle. Bulletin de l’Institut océanographique, Monaco, no. spec. 13, 61–117.Google Scholar
  16. Kempe, S., and Kazmierczak, J., 1997. A terrestrial model for an alkaline martian hydrosphere. Planetary and Space Science, 45, 1493–1499.CrossRefGoogle Scholar
  17. Kempe, S., and Kazmierczak, J., 2003. Modern soda lakes: model environments for an early alkaline ocean. In Müller, T., and Müller, H. (eds.), Modelling in Natural Sciences; Design, Validation and Case Studies. Berlin: Springer-Verlag, pp. 309–322.Google Scholar
  18. Kempe, S., Kazmierczak, J., Landmann, G., Konuk, T., Reimer, A., and Lipp, A., 1991. Largest known microbialites discovered in Lake Van, Turkey. Nature, 349, 605–608.CrossRefGoogle Scholar
  19. Kraml, M., and Bull, A., 1998/1999. Sodaseen im Ostafrikanischen Graben – ihre Entstehung und Bedeutung. Berichte der Naturforschenden Gesellschaft zu Freiburg i. Br, 88/89, 85–118.Google Scholar
  20. Morse, J. W., Gledhill, W. K., and Millero, F. J., 2002. CaCO3 precipitation kinetics in waters from the Grand Bahama Bank: implications for the relationship between hydrochemistry and whitings. Abstracts of the 6th International Symposium on the Geochemistry of Earth’s Surface, May 20–24, 2002, Honolulu, Hawaii, pp. 138–140.Google Scholar
  21. Parkhurst, D. L., Thorstenson, D. C., and Plummer, L. N., 1990. PHREEQE – A computer program for geochemical calculation. (Conversion and upgrade of the prime version of PHREEQE to IBM PC-compatible systems by Tirisanni, J. V., Glynn, P. D.,) US Geological Survey and Water Research Reports 80–96, 197 pp.Google Scholar
  22. Pegler, K., and Kempe, S., 1988. The carbonate system of the North Sea: determination of alkalinity and TCO2 and calculation of PCO2 and SIcal (Spring 1986). In Kempe, S., Liebezeit, G., Dethlefsen, V., and Harms, U. (eds.), Biogeochemistry and Distribution of Suspended Matter in the North Sea and Implications to Fisheries Biology. Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg, SCOPE/UNEP Sonderband, 65, pp. 35–87.Google Scholar
  23. Reimer, A., 1995. Hydrochemie und Geochemie der Sedimente und Porenwässer des hochalkalinen Van Sees in der Osttürkei, Faculty of Geosciences. Unpublished PhD Theses, University of Hamburg, 136 pp.Google Scholar
  24. Reimer, A., Landmann, G., and Kempe, S., 2009. Lake Van, Eastern Anatolia, hydrochemistry and history. Aquatic Geochemistry, 15, 195–222.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Stephan Kempe
    • 1
  • Jozef Kazmierczak
    • 1
  1. 1.Department of Physical Geology and Global Cycles Institute for Applied GeosciencesUniversity of TechnologyDarmstadtGermany