Skip to main content

Snowball Earth

  • Reference work entry

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Synonyms

Cryochron; Global glaciation; Hard snowball; Ice-albedo catastrophe; Snowball (in geology); White Earth

Definition

Snowball Earth is a climate in which the oceans and most land areas are permanently covered by glacial ice. As less sunlight is absorbed by ice than by water or land, a critical area of ice will cause surface temperatures to fall below freezing everywhere, resulting in a snowball Earth. This arguably occurred near the beginning and end of the Proterozoic eon. Snowball Earths self-destruct after millions of years due to the buildup of atmospheric carbon dioxide of volcanic and metamorphic origin, which could not be converted into organic matter or limestone. Biological evolution is a postulated cause and consequence of snowball episodes.

History of the concept

Sedimentary deposits of glacial origin were first described from the late Proterozoic (Neoproterozoic) of Scotland in 1871 and from the early Proterozoic (Paleoproterozoic) of Canada in 1907. By 1940, it was...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  • Allen, P. A., and Hoffman, P. F., 2005. Extreme winds and waves in the aftermath of a Neoproterozoic glaciation. Nature, 433, 123–127.

    Article  Google Scholar 

  • Anderson, S. P., 2007. Biogeochemistry of glacial landscape systems. Annual Reviews of Earth and Planetary Sciences, 35, 375–399.

    Article  Google Scholar 

  • Baker, M. E., 2006. The genetic response to snowball Earth: role of HSP90 in the Cambrian explosion. Geobiology, 4, 11–14.

    Article  Google Scholar 

  • Bao, H., Lyons, J. R., and Zhou, C., 2008. Triple oxygen isotope evidence for elevated CO2 levels after a Neoproterozoic glaciation. Nature, 452, 504–506.

    Article  Google Scholar 

  • Bao, H., Fairchild, I. J., Wynn, P. M., and Spoetl, C., 2009. Stretching the envelope of past surface environments: Neoproterozoic glacial lakes from Svalbard. Science, 323, 119–122.

    Article  Google Scholar 

  • Bekker, A., Kaufman, A. J., Karhu, J. A., and Eriksson, K. A., 2005. Evidence for Paleoproterozoic cap carbonates in North America. Precambrian Research, 137, 167–206.

    Article  Google Scholar 

  • Bekker, A., Karhu, J. A., and Kaufman, A. J., 2006. Carbon isotope record for the onset of the Lomagundi carbon isotope excursion in the Great Lakes area, North America. Precambrian Research, 148, 145–180.

    Article  Google Scholar 

  • Bendtsen, J., 2002. Climate sensitivity to changes in solar insolation in a simple coupled climate model. Climate Dynamics, 18, 595–609.

    Google Scholar 

  • Bendtsen, J., and Bjerrum, C. J., 2002. Vulnerability of climate on Earth to sudden changes in insolation. Geophysical Research Letters, 29, 10.1029/2002GL014829.

    Google Scholar 

  • Berger, W. H., 1982. Increase of carbon dioxide in the atmosphere during deglaciation: the coral reef hypothesis. Naturwissenschaften, 69, 87–88.

    Article  Google Scholar 

  • Boulton, G. S., and Deynoux, M., 1981. Sedimentation in glacial environments and the identification of tills and tillites in ancient sedimentary sequences. Precambrian Research, 15, 397–422.

    Article  Google Scholar 

  • Boyle, R. A., Lenton, T. M., and Williams, H. T. P., 2007. Neoproterozoic ‘snowball Earth’ glaciations and the evolution of altruism. Geobiology, 5(4), 337–349.

    Article  Google Scholar 

  • Brocks, J. J., Logan, G. A., Buick, R., and Summons, R. E., 1999. Archean molecular fossils and the early rise of eukaryotes. Science, 285, 1033–1026.

    Article  Google Scholar 

  • Canfield, D. E., and Raiswell, R., 1999. The evolution of the sulfur cycle. American Journal of Science, 299, 697–723.

    Article  Google Scholar 

  • Carver, J. H., and Vardavas, I. M., 1994. Precambrian glaciations and the evolution of the atmosphere. Annales Geophysicae, 12, 674–682.

    Article  Google Scholar 

  • Catling, D. C., Zahnle, K. J., and McKay, C. P., 2001. Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth. Science, 293, 839–843.

    Article  Google Scholar 

  • Claire, M. W., Catling, D. C., and Zahnle, K. J., 2006. Biogeochemical modelling of the rise in atmospheric oxygen. Geobiology, 4, 239–269.

    Article  Google Scholar 

  • Corsetti, F. A., and Grotzinger, J. P., 2005. Origin and significance of tube structures in Neoproterozoic post-glacial cap carbonates: example from Noonday Dolomite, Death Valley, United States. Palaios, 20, 348–363.

    Article  Google Scholar 

  • Crowley, T. J., and North, G. R., 1991. Paleoclimatology. New York: Oxford University Press.

    Google Scholar 

  • Donnadieu, Y., Fluteau, F., Ramstein, G., Ritz, C., and Besse, J., 2003. Is there a conflict between the Neoproterozoic glacial deposits and the snowball Earth interpretation: an improved understanding with numerical modeling. Earth and Planetary Science Letters, 208, 101–112.

    Article  Google Scholar 

  • Donnadieu, Y., Goddéris, Y., Ramstein, G., Nédélec, A., and Meert, J., 2004. A ‘snowball Earth’ climate triggered by continental break-up through changes in runoff. Nature, 428, 303–306.

    Article  Google Scholar 

  • Elie, M., Nogueira, A. C. R., Nédélec, A., Trindade, R. I. F., and Kenig, F., 2007. Biodiversity collapse and red algal bloom in the aftermath of the Marinoan Snowball Earth. Terra Nova, 19, 303–308.

    Article  Google Scholar 

  • Evans, D. A. D., 2000. Stratigraphic, geochronological, and paleomagnetic constraints upon the Neoproterozoic climatic paradox. American Journal of Science, 300, 347–433.

    Article  Google Scholar 

  • Evans, D. A. D., 2003. A fundamental Precambrian–Phanerozoic shift in earth’s glacial style? Tectonophysics, 375, 353–385.

    Article  Google Scholar 

  • Evans, D. A. D., 2006. Proterozoic low orbital obliquity and axial-dipolar geomagnetic field from evaporite palaeolatitudes. Nature, 444, 51–55.

    Article  Google Scholar 

  • Evans, D. A., Beukes, N. J., and Kirschvink, J. L., 1997. Low-latitude glaciation in the Palaeoproterozoic era. Nature, 386, 262–266.

    Article  Google Scholar 

  • Farquhar, J., Bao, H., and Thiemens, M., 2000. Atmospheric influence of Earth’s earliest sulfur cycle. Science, 289, 756–758.

    Article  Google Scholar 

  • Fawcett, P. J., and Boslough, M. B. E., 2002. Climatic effects of an impact-induced equatorial debris ring. Journal of Geophysical Research, 107, 10.1029/2001JD001230.

    Google Scholar 

  • Fischer, W. W., Summons, R. E., and Pearson, A., 2005. Targetes genomic detection of biosynthetic pathways: anaerobic production of hopanoid biomarkers by a common sedimentary microbe. Geobiology, 3, 33–40.

    Article  Google Scholar 

  • Font, E., Nédélec, A., Trindade, R. I. F., Macouin, M., and Charrière, A., 2006. Chemostratigraphy of the Neoproterozoic Mirassol d’Oeste cap dolostones (Mato Grosso, Brazil): an alternative model for Marinoan cap dolostone formation. Earth and Planetary Science Letters, 250, 89–103.

    Article  Google Scholar 

  • Furukawa, Y., and Wettlaufer, J. S., 2007. Snow and ice crystals. Physics Today, 60, 70–71.

    Article  Google Scholar 

  • Goddéris, Y., Donnadieu, Y., Nédélec, A., Dupré, B., Dessert, C., Grard, A., Ramstein, G., and Francois, L. M., 2003. The Sturtian ‘snowball’ glaciation: fire and ice. Earth and Planetary Science Letters, 211, 1–12.

    Article  Google Scholar 

  • Goodman, J., and Pierrehumbert, R. T., 2003. Glacial flow of floating marine ice in “Snowball Earth”. Journal of Geophysical Research, 108, (C10): 10.1029/2002JC001471.

    Google Scholar 

  • Grotzinger, J. P., and Knoll, A. H., 1995. Anomalous carbonate precipitates: Is the Precambrian the key to the Permian? Palaios, 10, 578–596.

    Article  Google Scholar 

  • Halverson, G. P., 2006. A Neoproterozoic chronology. In Xiao, S., and Kaufman, A. J. (eds.), Neoproterozoic Geobiology and Paleobiology. Dordrecht: Springer, pp. 231–271.

    Chapter  Google Scholar 

  • Halverson, G. P., and Hurtgen, M. T., 2007. Ediacaran growth of the marine sulfate reservoir. Earth and Planetary Science Letters, 263, 32–44.

    Article  Google Scholar 

  • Halverson, G. P., Hoffman, P. F., Schrag, D. P., and Kaufman, J. A., 2002. A major perturbation of the carbon cycle before the Ghaub glaciation (Neoproterozoic) in Namibia: prelude to snowball Earth? Geophysics, Geochemistry, Geosystems, 3, 10.1029/2001GC000244.

    Google Scholar 

  • Halverson, G. P., Hoffman, P. F., Schrag, D. P., Maloof, A. C., and Rice, A. H. N., 2005. Toward a Neoproterozoic composite carbon-isotope record. Geological Society of America Bulletin, 117, 1181–1207.

    Article  Google Scholar 

  • Hambrey, M. J., and Harland, W. B., 1981. Earth’s Pre-Pleistocene Glacial Record. London: Cambridge University Press.

    Google Scholar 

  • Harland, W. B., 1964. Evidence of late Precambrian glaciation and its significance. In Nairn, A. E. M. (ed.), Problems in Palaeoclimatology. London: Interscience, pp. 115–118.

    Google Scholar 

  • Harland, W. B., and Rudwick, M. J. S., 1964. The great infra-Cambrian ice age. Scientific American, 211(2), 28–36.

    Article  Google Scholar 

  • Hartman, H., 2002. Macroevolution, catastrope and horizontal transfer. In Syvanen, M., and Kado, C. I. (eds.), Horizontal Gene Transfer, 2nd edn. San Diego: Academic, pp. 411–415.

    Google Scholar 

  • Higgins, J. A., and Schrag, D. P., 2003. Aftermath of a snowball Earth. Geophysics, Geochemistry, Geosystems, 4, 10.1029/2002GC000403.

    Google Scholar 

  • Hoffman, P. F., 2005. On Cryogenian (Neoproterozoic) ice-sheet dynamics and the limitations of the glacial sedimentary record. South African Journal of Geology, 108, 557–576.

    Article  Google Scholar 

  • Hoffman, P. F., and Schrag, D. P., 2002. The snowball Earth hypothesis: testing the limits of global change. Terra Nova, 14, 129–155.

    Article  Google Scholar 

  • Hoffman, P. F., Kaufman, J. A., and Halverson, G. P., 1998a. Comings and goings of global glaciations on a Neoproterozoic carbonate platform in Namibia. GSA Today, 8, 1–9.

    Google Scholar 

  • Hoffman, P. F., Kaufman, A. J., Halverson, G. P., and Schrag, D. P., 1998b. A Neoproterozoic snowball Earth. Science, 281, 1342–1346.

    Article  Google Scholar 

  • Hoffman, P. F., Halverson, G. P., Domack, E. W., Husson, J. M., Higgins, J. A., and Schrag, D. P., 2007. Are basal Ediacaran (635 Ma) post-glacial “cap dolostones diachronous? Earth and Planetary Science Letters, 258, 114–131.

    Article  Google Scholar 

  • Hurtgen, M. T., Arthur, M. A., Suits, N. S., and Kaufman, A. J., 2002. The sulfur isotopic composition of Neoproterozoic seawater sulfate: implications for a snowball Earth? Earth and Planetary Science Letters, 203, 413–429.

    Article  Google Scholar 

  • Hurtgen, M. T., Halverson, G. P., Arthur, M. A., and Hoffman, P. F., 2006. Sulfur cycling in the aftermath of a 635-Ma snowball glaciation: evidence for a syn-glacial sulfidic deep ocean. Earth and Planetary Science Letters, 245, 551–570.

    Article  Google Scholar 

  • James, N. P., Narbonne, G. M., and Kyser, T. K., 2001. Late Neoproterozoic cap carbonates: Mackenzie Mountains, northwestern Canada: precipitation and global glacial meltdown. Canadian Journal of Earth Sciences, 38, 1229–1262.

    Article  Google Scholar 

  • Jiang, G., Kennedy, M. J., and Christie-Blick, N., 2003. Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates. Nature, 426, 822–826.

    Article  Google Scholar 

  • Kasemann, S. A., Hawkesworth, C. J., Prave, A. R., Fallick, A. E., and Pearson, P. N., 2005. Boron and calcium isotope composition in Neoproterozoic carbonate rocks from Namibia: evidence for extreme environmental change. Earth and Planetary Science Letters, 231, 73–86.

    Article  Google Scholar 

  • Kaufman, A. J., Jacobsen, S. B., and Knoll, A. H., 1993. The Vendian record of Sr and C isotopic variations in seawater: implications for tectonic and paleoclimate. Earth and Planetary Science Letters, 120, 409–430.

    Article  Google Scholar 

  • Kaufman, A. J., Knoll, A. H., and Narbonne, G. M., 1997. Isotopes, ice ages, and terminal Proterozoic earth history. Proceedings of the National Academy of Sciences (USA), 94, 6600–6605.

    Article  Google Scholar 

  • Kellerhals, P., and Matter, A., 2003. Facies analysis of a glaciomarine sequence, the Neoproterozoic Mirbat Sandstone Formation, Sultanate of Oman. Eclogae Geologicae Helvetiae, 96, 49–70.

    Google Scholar 

  • Kennedy, M. J., 1996. Stratigraphy, sedimentology, and isotopic geochemistry of Australian Neoproterozoic postglacial cap dolostones: deglaciation, δ13C excursions, and carbonate precipitation. Journal of Sedimentary Research, 66, 1050–1064.

    Article  Google Scholar 

  • Kennedy, M. J., Christie-Blick, N., and Sohl, L. E., 2001. Are Proterozoic cap carbonates and isotopic excursions a record of gas hydrate destabilization following Earth’s coldest intervals? Geology, 29, 443–446.

    Article  Google Scholar 

  • Kirschvink, J. L., 1992. Late Proterozoic low-latitude glaciation: the snowball Earth. In Schopf, J. W., and Klein, C. (eds.), The Proterozoic Biosphere. Cambridge: Cambridge University Press, pp. 51–52.

    Google Scholar 

  • Kirschvink, J. L., Gaidos, E. J., Bertani, L. E., Beukes, N. J., Gutsmer, J., Maepa, L. N., and Steinberger, R. E., 2000. Paleoproterozoic snowball Earth: extreme climatic and geochemical global change and its biological consequences. Proceedings of the National Academy of Sciences (USA), 97, 1400–1405.

    Article  Google Scholar 

  • Klein, C., 2005. Some Precambrian banded iron-formations (BIFs) from around the world: their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin. American Mineralogist, 90, 1473–1499.

    Article  Google Scholar 

  • Knoll, A. H., 2003. Life on a Young Planet. Princeton: Princeton University Press.

    Google Scholar 

  • Knoll, A. H., Javaux, E. J., Hewitt, D., and Cohen, P., 2006a. Eukaryotic organisms in Proterozoic oceans. Philosophical Transactions of the Royal Society, London, Series B, 361, 1023–1038.

    Article  Google Scholar 

  • Knoll, A. H., Walter, M. R., Narbonne, G. M., and Christie-Blick, N., 2006b. The Ediacaran Period: a new addition to the geologic time scale. Lethaia, 39, 13–30.

    Article  Google Scholar 

  • Kopp, R. E., Kirschvink, J. L., Hilburn, I. A., and Nash, C. Z., 2005. The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. Proceedings of the National Academy of Sciences (USA), 102, 11131–11136.

    Article  Google Scholar 

  • Kump, L. R., and Seyfried, W. E. Jr., 2005. Hydrothermal Fe fluxes during the Precambrian: effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokers. Earth and Planetary Science Letters, 235, 654–662.

    Article  Google Scholar 

  • Le Hir, G., Ramstein, G., Donnadieu, Y., and Goddéris, Y., 2008. Scenario for the evolution of atmospheric pCO2 during a snowball Earth. Geology, 36, 47–50.

    Article  Google Scholar 

  • Le Hir, G., Ramstein, G., Donnadieu, Y., and Pierrehumbert, R. T., 2007. Investigating plausible mechanisms to trigger a deglaciation from a hard snowball Earth. Comptes Rendus Geoscience, 339, 274–287.

    Article  Google Scholar 

  • Levrard, B., and Laskar, J., 2003. Climate friction and the Earth’s obliquity. Geophysical Journal International, 154, 970–990.

    Article  Google Scholar 

  • Lewis, J. P., Weaver, A. J., and Eby, M., 2006. Deglaciating the snowball Earth: sensitivity to surface albedo. Geophysical Research Letters, 33, L23604, doi: 10.1029/2006GL027774.

    Google Scholar 

  • Lewis, J. P., Weaver, A. J., and Eby, M., 2007. Snowball versus slushball Earth: dynamic versus nondynamic sea ice? Journal of Geophysical Research, 112, C11014, doi: 10.1029/2006JC004037.

    Google Scholar 

  • Li, Z. X., Evans, D. A. D., and Zhang, S., 2004. A 90° spin on Rodinia: possible causal links between the Neoproterozoic supercontinent, superplume, true polar wander and low-latitude glaciation. Earth and Planetary Science Letters, 220, 409–421.

    Article  Google Scholar 

  • Li, Z. X., Bogdanova, S. V., Collins, A. S., Davidson, A., De Waele, B., Ernst, R. E., Fitzsimons, I. C. W., Fuck, R. A., Gladkochub, D. P., Jacobs, J., Karlstrom, K. E., Lu, S., Natapov, L. M., Pease, V., Pisarevsky, S. A., Thrane, K., and Vernikovsky, V., 2008. Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Research, 160, 179–210.

    Article  Google Scholar 

  • Liang, M. C., Hartman, H., Kopp, R. E., Kirschvink, J. L., and Yung, Y. L., 2006. Production of hydrogen peroxide in the atmosphere of the Snowball Earth and the origin of oxygenic photosynthesis. Proceedings of the National Academy of Sciences (USA), 103(50), 18896–18899.

    Article  Google Scholar 

  • Love, G. D., Grosjean, E., Stalvies, C., Fike, D. A., Grotzinger, J. P., Bradley, A. S., Kelly, A. E., Bhatia, M., Meredith, W., Snape, C. E., Bowring, S. A., Condon, D. J., and Summons, R. E., 2009. Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature, 457, 718–722.

    Article  Google Scholar 

  • Maloof, A. C., Kellogg, J. B., and Anders, A. M., 2002. Neoproterozoic sand wedges: crack formation in frozen soils under diurnal forcing during a snowball Earth. Earth and Planetary Science Letters, 204, 1–15.

    Article  Google Scholar 

  • Martin, H., 1964. Observations concerning the problem of the late Precambrian glacial deposits in South West Africa (in German with English summary). Geologische Rundschau, 54, 115–127.

    Article  Google Scholar 

  • Néron de Surgy, O., and Laskar, J., 1997. On the long term evolution of the spin of the Earth. Astronomy and Astrophysics, 318, 975–989.

    Google Scholar 

  • North, G. R., 1990. Multiple solutions in energy balance climate models. Palaeogeography, Palaeoclimatology, Palaeoecology Global and Planetary Change Section, 82, 225–235.

    Article  Google Scholar 

  • Ojakangas, R. W., 1988. Glaciation: an uncommon “mega-event as a key to intracontinental and intercontinental correlation of early Proterozoic basin fill, North America and Baltic cratons. In Kleinspehn, K. L., and Paola, C. (eds.), New Perspectives in Basin Analysis. New York: Springer, pp. 431–444.

    Chapter  Google Scholar 

  • Opdyke, B. N., and Wilkinson, B. H., 1990. Paleolatitude distribution of Phanerozoic marine ooids and cements. Palaeogeography, Palaeoclimatology, Palaeoecology, 78, 135–148.

    Article  Google Scholar 

  • Pais, M. A., Le Mouël, J. L., Lambeck, K., and Poirier, J. P., 1999. Late Precambrian paradoxical glaciation and obliquity of the Earth – a discussion of dynamical constraints. Earth and Planetary Science Letters, 174, 155–171.

    Article  Google Scholar 

  • Pavlov, A. A., Hurtgen, M. T., Kasting, J. F., and Arthur, M. A., 2003. Methane-rich Proterozoic atmosphere? Geology, 31, 87–90.

    Article  Google Scholar 

  • Pavlov, A. A., Kasting, J. F., Brown, L. L., Rages, K. A., and Freedman, R., 2000. Greenhouse warming by CH4 in the atmosphere of early Earth. Journal of Geophysical Research, 105, 11,981–11,990.

    Article  Google Scholar 

  • Pavlov, A. A., Toon, O. B., Pavlov, A. K., Bally, J., and Pollard, D., 2005. Passing through a giant molecular cloud: “Snowball” glaciations produced by interstellar dust. Geophysical Research Letters, 32, L03705, 10.1029/2004GL021890.

    Google Scholar 

  • Peltier, W. R., Tarasov, L., Vettoretti, G., and Solheim, L. P., 2004. Climate dynamics in deep time: modeling the “snowball bifurcation” and assessing the plausibility of its occurrence. In Jenkins, G. S., McMenamin, M. A. S., McKey, C. P., and Sohl, L. (eds.), The Extreme Proterozoic: Geology, Geochemistry, and Climate. Geophysical Monograph. Washington: American Geophysical Union, Vol. 146, pp. 107–124.

    Chapter  Google Scholar 

  • Peterson, K. J., and Butterfield, N. J., 2005. Origin of the Eumetazoa: testing ecological predictions of molecular clocks against the Proterozoic fossil record. Proceedings of the National Academy of Sciences (USA), 102, 9547–9552.

    Article  Google Scholar 

  • Peterson, K. J., McPeek, M. A., and Evans, D. A. D., 2005. Tempo and mode of early animal evolution: inferences from rocks, Hox, and molecular clocks. Paleobiology, 31, 36–55.

    Article  Google Scholar 

  • Pierrehumbert, R. T., 2005. Climate dynamics of a hard snowball Earth. Journal of Geophysical Research, 110, D01111, 10.1029/2004JD005162.

    Google Scholar 

  • Pollard, D., and Kasting, J. F., 2004. Climate-ice sheet simulations of Neoproterozoic glaciation before and after collapse to Snowball Earth. In Jenkins, G. S., McMenamin, M. A. S., McKey, C. P., and Sohl, L. (eds.), The Extreme Proterozoic: Geology, Geochemistry, and Climate. Geophysical Monograph. Washington: American Geophysical Union, Vol. 146, pp. 91–105.

    Chapter  Google Scholar 

  • Pollard, D., and Kasting, J. F., 2005. Snowball Earth: a thin-ice solution with flowing glaciers. Journal of Geophysical Research, 110, C07010: 10.1029/2004JC002525.

    Google Scholar 

  • Poulsen, C., and Jacob, R., 2004. Factors that inhibit snowball Earth simulation. Paleoceanography, 19, PA4021, doi: 10.1029/2004PA001056.

    Google Scholar 

  • Rashby, S. E., Sessions, A. L., Summons, R. E., and Newman, D. K., 2007. Biosynthesis of 2-methylbacteriohopanepolyols by an anoxygenic phototroph. Proceedings of the National Academy of Sciences (USA), 104, 15099–15104.

    Article  Google Scholar 

  • Ridgwell, A. J., Kennedy, M. J., and Caldeira, K., 2003. Carbonate deposition, climate stability, and Neoproterozoic ice ages. Science, 302, 859–862.

    Article  Google Scholar 

  • Roberts, J. D., 1971. Late Precambrian glaciation: an anti-greenhouse effect? Nature, 234, 216.

    Article  Google Scholar 

  • Rokas, A., Krüger, D., and Carroll, S. B., 2005. Animal evolution and the molecular signature of radiations compressed in time. Science, 310, 1933–1938.

    Article  Google Scholar 

  • Schmidt, P. W., and Williams, G. E., 1995. The Neoproterozoic climatic paradox: equatorial paleolatitude for Marinoan glaciation near sea level in South Australia. Earth and Planetary Science Letters, 134, 107–124.

    Article  Google Scholar 

  • Schrag, D. P., Berner, R. A., Hoffman, P. F., and Halverson, G. P., 2002. On the initiation of a snowball Earth. Geophysics, Geochemistry, Geosystems, 3, 10.1029/2001GC000219.

    Google Scholar 

  • Scott, C., Lyons, T. W., Bekker, A., Shen, Y., Poulton, S. W., Chu, X., and Anbar, A. D., 2008. Tracing stepwise oxygenation of the Proterozoic biosphere. Nature, 452, 456–460.

    Article  Google Scholar 

  • Sheldon, R. P., 1984. Ice-ring origin of the Earth’s atmosphere and hydrosphere and Late Proterozoic–Cambrian hypothesis. Geological Survey of India Special Publication, 17, 17–21.

    Google Scholar 

  • Shields, G. A., 2005. Neoproterozoic cap carbonates: a critical appraisal of existing models and the plumeworld hypothesis. Terra Nova, 17, 299–310.

    Article  Google Scholar 

  • Shields, G. A., Deynoux, M., Strauss, H., Paquet, H., and Nahon, D., 2007. Barite-bearing cap dolostone of the Taoudéni Basin, northwest Africa: sedimentary and isotopic evidence for methane seepage after a Neoproterozoic glaciation. Precambrian Research, 154, 209–235.

    Article  Google Scholar 

  • Stoeck, T., Kasper, J., Bunge, J., Leslin, C., Ilyin, V., and Epstein, S., 2007. Protistan diversity in the Arctic: a case of palaeclimate shaping of modern biodiversity? PloS ONE, 2(8), e728. doi: 10.1371/journal.pone.0000728.

    Google Scholar 

  • Summons, R. E., Jahnke, L. L., Hope, J. M., and Logan, G. A., 1999. 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature, 400, 554–557.

    Article  Google Scholar 

  • Trindade, R. I. F., and Macouin, M., 2007. Paleolatitude of glacial deposits and paleogeography of Neoproterozoic ice ages. Comptes Rendus Geoscience, 339, 200–211.

    Article  Google Scholar 

  • Vieira, L. C., Trindade, R. I. F., Nogueira, A. C. R., and Ader, M., 2007. Identification of a Sturtian cap carbonate in the Neoproterozoic Sete Lagoas carbonate platform, Bambuí Group, Brazil. Comptes Rendus Geoscience, 339, 240–258.

    Article  Google Scholar 

  • Vincent, W. F., Mueller, D. R., and Bonilla, S., 2004. Ecosystems on ice: the microbial ecology of Markham Ice Shelf in the high Arctic. Cryobiology, 48, 103–112.

    Article  Google Scholar 

  • Walker, J. C. G., Hays, P. B., and Kasting, J. F., 1981. A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. Journal of Geophysical Research, 86(C10), 9776–9782.

    Article  Google Scholar 

  • Warren, S. G., Brandt, R. E., Grenfell, T. C., and McKay, C. P., 2002. Snowball Earth: ice thickness on the tropical ocean. Journal of Geophysical Research, 107(C10), 10.1029/2001JC001123.

    Google Scholar 

  • Williams, G. E., 1975. Late Precambrian glacial climate and the Earth’s obliquity. Geological Magazine, 112, 441–544.

    Article  Google Scholar 

  • Williams, G. E., 2000. Geological constraints on the Precambrian history of Earth’s rotation and the Moon’s orbit. Reviews of Geophysics, 38(1), 37–59.

    Article  Google Scholar 

  • Williams, D. M., Kasting, J. F., and Frakes, L. A., 1998. Low-latitude glaciation and rapid changes in the Earth’s obliquity explained by obliquity–oblateness feedback. Nature, 396, 453–455.

    Article  Google Scholar 

  • Yin, L., Zhu, M., Knoll, A. H., Yuan, X., Zhang, J., and Hu, J., 2007. Doushantuo embryos preserved inside diapause egg cysts. Nature, 446, 661–663.

    Article  Google Scholar 

  • Yoshioka, H., Asahara, Y., Tojo, B., and Kawakami, S., 2003. Systematic variations in C, O, and Sr isotopes and elemental concentrations in Neoproterozoic carbonates in Namibia: implications for a glacial to interglacial transition. Precambrian Research, 124, 69–85.

    Article  Google Scholar 

  • Zhang, S., Jiang, G., and Han, Y., 2008. The age of the Nantuo Formation and Nantuo glaciation in South China. Terra Nova, 20, 289–294.

    Article  Google Scholar 

  • Ziegler, A. M., Hulver, M. L., Lottes, A. L., and Schmachtenberg, W. F., 1984. Uniformitarianism and paleoclimates: inferences from the distribution of carbonate rocks. In Brenchley, P. J. (ed.), Fossils and Climate. New York: Wiley, pp. 3–25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Hoffman, P.F. (2011). Snowball Earth. In: Reitner, J., Thiel, V. (eds) Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9212-1_190

Download citation

Publish with us

Policies and ethics