Encyclopedia of Geobiology

2011 Edition
| Editors: Joachim Reitner, Volker Thiel

Snowball Earth

  • Paul F. Hoffman
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-9212-1_190


Cryochron; Global glaciation; Hard snowball; Ice-albedo catastrophe; Snowball (in geology); White Earth


Snowball Earth is a climate in which the oceans and most land areas are permanently covered by glacial ice. As less sunlight is absorbed by ice than by water or land, a critical area of ice will cause surface temperatures to fall below freezing everywhere, resulting in a snowball Earth. This arguably occurred near the beginning and end of the Proterozoic eon. Snowball Earths self-destruct after millions of years due to the buildup of atmospheric carbon dioxide of volcanic and metamorphic origin, which could not be converted into organic matter or limestone. Biological evolution is a postulated cause and consequence of snowball episodes.

History of the concept

Sedimentary deposits of glacial origin were first described from the late Proterozoic (Neoproterozoic) of Scotland in 1871 and from the early Proterozoic (Paleoproterozoic) of Canada in 1907. By 1940, it was...


Glacial Deposit Sediment Gravity Flow Neoproterozoic Glaciation Present Atmospheric Level Organic Burial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Allen, P. A., and Hoffman, P. F., 2005. Extreme winds and waves in the aftermath of a Neoproterozoic glaciation. Nature, 433, 123–127.CrossRefGoogle Scholar
  2. Anderson, S. P., 2007. Biogeochemistry of glacial landscape systems. Annual Reviews of Earth and Planetary Sciences, 35, 375–399.CrossRefGoogle Scholar
  3. Baker, M. E., 2006. The genetic response to snowball Earth: role of HSP90 in the Cambrian explosion. Geobiology, 4, 11–14.CrossRefGoogle Scholar
  4. Bao, H., Lyons, J. R., and Zhou, C., 2008. Triple oxygen isotope evidence for elevated CO2 levels after a Neoproterozoic glaciation. Nature, 452, 504–506.CrossRefGoogle Scholar
  5. Bao, H., Fairchild, I. J., Wynn, P. M., and Spoetl, C., 2009. Stretching the envelope of past surface environments: Neoproterozoic glacial lakes from Svalbard. Science, 323, 119–122.CrossRefGoogle Scholar
  6. Bekker, A., Kaufman, A. J., Karhu, J. A., and Eriksson, K. A., 2005. Evidence for Paleoproterozoic cap carbonates in North America. Precambrian Research, 137, 167–206.CrossRefGoogle Scholar
  7. Bekker, A., Karhu, J. A., and Kaufman, A. J., 2006. Carbon isotope record for the onset of the Lomagundi carbon isotope excursion in the Great Lakes area, North America. Precambrian Research, 148, 145–180.CrossRefGoogle Scholar
  8. Bendtsen, J., 2002. Climate sensitivity to changes in solar insolation in a simple coupled climate model. Climate Dynamics, 18, 595–609.Google Scholar
  9. Bendtsen, J., and Bjerrum, C. J., 2002. Vulnerability of climate on Earth to sudden changes in insolation. Geophysical Research Letters, 29, 10.1029/2002GL014829.Google Scholar
  10. Berger, W. H., 1982. Increase of carbon dioxide in the atmosphere during deglaciation: the coral reef hypothesis. Naturwissenschaften, 69, 87–88.CrossRefGoogle Scholar
  11. Boulton, G. S., and Deynoux, M., 1981. Sedimentation in glacial environments and the identification of tills and tillites in ancient sedimentary sequences. Precambrian Research, 15, 397–422.CrossRefGoogle Scholar
  12. Boyle, R. A., Lenton, T. M., and Williams, H. T. P., 2007. Neoproterozoic ‘snowball Earth’ glaciations and the evolution of altruism. Geobiology, 5(4), 337–349.CrossRefGoogle Scholar
  13. Brocks, J. J., Logan, G. A., Buick, R., and Summons, R. E., 1999. Archean molecular fossils and the early rise of eukaryotes. Science, 285, 1033–1026.CrossRefGoogle Scholar
  14. Canfield, D. E., and Raiswell, R., 1999. The evolution of the sulfur cycle. American Journal of Science, 299, 697–723.CrossRefGoogle Scholar
  15. Carver, J. H., and Vardavas, I. M., 1994. Precambrian glaciations and the evolution of the atmosphere. Annales Geophysicae, 12, 674–682.CrossRefGoogle Scholar
  16. Catling, D. C., Zahnle, K. J., and McKay, C. P., 2001. Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth. Science, 293, 839–843.CrossRefGoogle Scholar
  17. Claire, M. W., Catling, D. C., and Zahnle, K. J., 2006. Biogeochemical modelling of the rise in atmospheric oxygen. Geobiology, 4, 239–269.CrossRefGoogle Scholar
  18. Corsetti, F. A., and Grotzinger, J. P., 2005. Origin and significance of tube structures in Neoproterozoic post-glacial cap carbonates: example from Noonday Dolomite, Death Valley, United States. Palaios, 20, 348–363.CrossRefGoogle Scholar
  19. Crowley, T. J., and North, G. R., 1991. Paleoclimatology. New York: Oxford University Press.Google Scholar
  20. Donnadieu, Y., Fluteau, F., Ramstein, G., Ritz, C., and Besse, J., 2003. Is there a conflict between the Neoproterozoic glacial deposits and the snowball Earth interpretation: an improved understanding with numerical modeling. Earth and Planetary Science Letters, 208, 101–112.CrossRefGoogle Scholar
  21. Donnadieu, Y., Goddéris, Y., Ramstein, G., Nédélec, A., and Meert, J., 2004. A ‘snowball Earth’ climate triggered by continental break-up through changes in runoff. Nature, 428, 303–306.CrossRefGoogle Scholar
  22. Elie, M., Nogueira, A. C. R., Nédélec, A., Trindade, R. I. F., and Kenig, F., 2007. Biodiversity collapse and red algal bloom in the aftermath of the Marinoan Snowball Earth. Terra Nova, 19, 303–308.CrossRefGoogle Scholar
  23. Evans, D. A. D., 2000. Stratigraphic, geochronological, and paleomagnetic constraints upon the Neoproterozoic climatic paradox. American Journal of Science, 300, 347–433.CrossRefGoogle Scholar
  24. Evans, D. A. D., 2003. A fundamental Precambrian–Phanerozoic shift in earth’s glacial style? Tectonophysics, 375, 353–385.CrossRefGoogle Scholar
  25. Evans, D. A. D., 2006. Proterozoic low orbital obliquity and axial-dipolar geomagnetic field from evaporite palaeolatitudes. Nature, 444, 51–55.CrossRefGoogle Scholar
  26. Evans, D. A., Beukes, N. J., and Kirschvink, J. L., 1997. Low-latitude glaciation in the Palaeoproterozoic era. Nature, 386, 262–266.CrossRefGoogle Scholar
  27. Farquhar, J., Bao, H., and Thiemens, M., 2000. Atmospheric influence of Earth’s earliest sulfur cycle. Science, 289, 756–758.CrossRefGoogle Scholar
  28. Fawcett, P. J., and Boslough, M. B. E., 2002. Climatic effects of an impact-induced equatorial debris ring. Journal of Geophysical Research, 107, 10.1029/2001JD001230.Google Scholar
  29. Fischer, W. W., Summons, R. E., and Pearson, A., 2005. Targetes genomic detection of biosynthetic pathways: anaerobic production of hopanoid biomarkers by a common sedimentary microbe. Geobiology, 3, 33–40.CrossRefGoogle Scholar
  30. Font, E., Nédélec, A., Trindade, R. I. F., Macouin, M., and Charrière, A., 2006. Chemostratigraphy of the Neoproterozoic Mirassol d’Oeste cap dolostones (Mato Grosso, Brazil): an alternative model for Marinoan cap dolostone formation. Earth and Planetary Science Letters, 250, 89–103.CrossRefGoogle Scholar
  31. Furukawa, Y., and Wettlaufer, J. S., 2007. Snow and ice crystals. Physics Today, 60, 70–71.CrossRefGoogle Scholar
  32. Goddéris, Y., Donnadieu, Y., Nédélec, A., Dupré, B., Dessert, C., Grard, A., Ramstein, G., and Francois, L. M., 2003. The Sturtian ‘snowball’ glaciation: fire and ice. Earth and Planetary Science Letters, 211, 1–12.CrossRefGoogle Scholar
  33. Goodman, J., and Pierrehumbert, R. T., 2003. Glacial flow of floating marine ice in “Snowball Earth”. Journal of Geophysical Research, 108, (C10): 10.1029/2002JC001471.Google Scholar
  34. Grotzinger, J. P., and Knoll, A. H., 1995. Anomalous carbonate precipitates: Is the Precambrian the key to the Permian? Palaios, 10, 578–596.CrossRefGoogle Scholar
  35. Halverson, G. P., 2006. A Neoproterozoic chronology. In Xiao, S., and Kaufman, A. J. (eds.), Neoproterozoic Geobiology and Paleobiology. Dordrecht: Springer, pp. 231–271.CrossRefGoogle Scholar
  36. Halverson, G. P., and Hurtgen, M. T., 2007. Ediacaran growth of the marine sulfate reservoir. Earth and Planetary Science Letters, 263, 32–44.CrossRefGoogle Scholar
  37. Halverson, G. P., Hoffman, P. F., Schrag, D. P., and Kaufman, J. A., 2002. A major perturbation of the carbon cycle before the Ghaub glaciation (Neoproterozoic) in Namibia: prelude to snowball Earth? Geophysics, Geochemistry, Geosystems, 3, 10.1029/2001GC000244.Google Scholar
  38. Halverson, G. P., Hoffman, P. F., Schrag, D. P., Maloof, A. C., and Rice, A. H. N., 2005. Toward a Neoproterozoic composite carbon-isotope record. Geological Society of America Bulletin, 117, 1181–1207.CrossRefGoogle Scholar
  39. Hambrey, M. J., and Harland, W. B., 1981. Earth’s Pre-Pleistocene Glacial Record. London: Cambridge University Press.Google Scholar
  40. Harland, W. B., 1964. Evidence of late Precambrian glaciation and its significance. In Nairn, A. E. M. (ed.), Problems in Palaeoclimatology. London: Interscience, pp. 115–118.Google Scholar
  41. Harland, W. B., and Rudwick, M. J. S., 1964. The great infra-Cambrian ice age. Scientific American, 211(2), 28–36.CrossRefGoogle Scholar
  42. Hartman, H., 2002. Macroevolution, catastrope and horizontal transfer. In Syvanen, M., and Kado, C. I. (eds.), Horizontal Gene Transfer, 2nd edn. San Diego: Academic, pp. 411–415.Google Scholar
  43. Higgins, J. A., and Schrag, D. P., 2003. Aftermath of a snowball Earth. Geophysics, Geochemistry, Geosystems, 4, 10.1029/2002GC000403.Google Scholar
  44. Hoffman, P. F., 2005. On Cryogenian (Neoproterozoic) ice-sheet dynamics and the limitations of the glacial sedimentary record. South African Journal of Geology, 108, 557–576.CrossRefGoogle Scholar
  45. Hoffman, P. F., and Schrag, D. P., 2002. The snowball Earth hypothesis: testing the limits of global change. Terra Nova, 14, 129–155.CrossRefGoogle Scholar
  46. Hoffman, P. F., Kaufman, J. A., and Halverson, G. P., 1998a. Comings and goings of global glaciations on a Neoproterozoic carbonate platform in Namibia. GSA Today, 8, 1–9.Google Scholar
  47. Hoffman, P. F., Kaufman, A. J., Halverson, G. P., and Schrag, D. P., 1998b. A Neoproterozoic snowball Earth. Science, 281, 1342–1346.CrossRefGoogle Scholar
  48. Hoffman, P. F., Halverson, G. P., Domack, E. W., Husson, J. M., Higgins, J. A., and Schrag, D. P., 2007. Are basal Ediacaran (635 Ma) post-glacial “cap dolostones diachronous? Earth and Planetary Science Letters, 258, 114–131.CrossRefGoogle Scholar
  49. Hurtgen, M. T., Arthur, M. A., Suits, N. S., and Kaufman, A. J., 2002. The sulfur isotopic composition of Neoproterozoic seawater sulfate: implications for a snowball Earth? Earth and Planetary Science Letters, 203, 413–429.CrossRefGoogle Scholar
  50. Hurtgen, M. T., Halverson, G. P., Arthur, M. A., and Hoffman, P. F., 2006. Sulfur cycling in the aftermath of a 635-Ma snowball glaciation: evidence for a syn-glacial sulfidic deep ocean. Earth and Planetary Science Letters, 245, 551–570.CrossRefGoogle Scholar
  51. James, N. P., Narbonne, G. M., and Kyser, T. K., 2001. Late Neoproterozoic cap carbonates: Mackenzie Mountains, northwestern Canada: precipitation and global glacial meltdown. Canadian Journal of Earth Sciences, 38, 1229–1262.CrossRefGoogle Scholar
  52. Jiang, G., Kennedy, M. J., and Christie-Blick, N., 2003. Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates. Nature, 426, 822–826.CrossRefGoogle Scholar
  53. Kasemann, S. A., Hawkesworth, C. J., Prave, A. R., Fallick, A. E., and Pearson, P. N., 2005. Boron and calcium isotope composition in Neoproterozoic carbonate rocks from Namibia: evidence for extreme environmental change. Earth and Planetary Science Letters, 231, 73–86.CrossRefGoogle Scholar
  54. Kaufman, A. J., Jacobsen, S. B., and Knoll, A. H., 1993. The Vendian record of Sr and C isotopic variations in seawater: implications for tectonic and paleoclimate. Earth and Planetary Science Letters, 120, 409–430.CrossRefGoogle Scholar
  55. Kaufman, A. J., Knoll, A. H., and Narbonne, G. M., 1997. Isotopes, ice ages, and terminal Proterozoic earth history. Proceedings of the National Academy of Sciences (USA), 94, 6600–6605.CrossRefGoogle Scholar
  56. Kellerhals, P., and Matter, A., 2003. Facies analysis of a glaciomarine sequence, the Neoproterozoic Mirbat Sandstone Formation, Sultanate of Oman. Eclogae Geologicae Helvetiae, 96, 49–70.Google Scholar
  57. Kennedy, M. J., 1996. Stratigraphy, sedimentology, and isotopic geochemistry of Australian Neoproterozoic postglacial cap dolostones: deglaciation, δ13C excursions, and carbonate precipitation. Journal of Sedimentary Research, 66, 1050–1064.CrossRefGoogle Scholar
  58. Kennedy, M. J., Christie-Blick, N., and Sohl, L. E., 2001. Are Proterozoic cap carbonates and isotopic excursions a record of gas hydrate destabilization following Earth’s coldest intervals? Geology, 29, 443–446.CrossRefGoogle Scholar
  59. Kirschvink, J. L., 1992. Late Proterozoic low-latitude glaciation: the snowball Earth. In Schopf, J. W., and Klein, C. (eds.), The Proterozoic Biosphere. Cambridge: Cambridge University Press, pp. 51–52.Google Scholar
  60. Kirschvink, J. L., Gaidos, E. J., Bertani, L. E., Beukes, N. J., Gutsmer, J., Maepa, L. N., and Steinberger, R. E., 2000. Paleoproterozoic snowball Earth: extreme climatic and geochemical global change and its biological consequences. Proceedings of the National Academy of Sciences (USA), 97, 1400–1405.CrossRefGoogle Scholar
  61. Klein, C., 2005. Some Precambrian banded iron-formations (BIFs) from around the world: their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin. American Mineralogist, 90, 1473–1499.CrossRefGoogle Scholar
  62. Knoll, A. H., 2003. Life on a Young Planet. Princeton: Princeton University Press.Google Scholar
  63. Knoll, A. H., Javaux, E. J., Hewitt, D., and Cohen, P., 2006a. Eukaryotic organisms in Proterozoic oceans. Philosophical Transactions of the Royal Society, London, Series B, 361, 1023–1038.CrossRefGoogle Scholar
  64. Knoll, A. H., Walter, M. R., Narbonne, G. M., and Christie-Blick, N., 2006b. The Ediacaran Period: a new addition to the geologic time scale. Lethaia, 39, 13–30.CrossRefGoogle Scholar
  65. Kopp, R. E., Kirschvink, J. L., Hilburn, I. A., and Nash, C. Z., 2005. The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. Proceedings of the National Academy of Sciences (USA), 102, 11131–11136.CrossRefGoogle Scholar
  66. Kump, L. R., and Seyfried, W. E. Jr., 2005. Hydrothermal Fe fluxes during the Precambrian: effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokers. Earth and Planetary Science Letters, 235, 654–662.CrossRefGoogle Scholar
  67. Le Hir, G., Ramstein, G., Donnadieu, Y., and Goddéris, Y., 2008. Scenario for the evolution of atmospheric pCO2 during a snowball Earth. Geology, 36, 47–50.CrossRefGoogle Scholar
  68. Le Hir, G., Ramstein, G., Donnadieu, Y., and Pierrehumbert, R. T., 2007. Investigating plausible mechanisms to trigger a deglaciation from a hard snowball Earth. Comptes Rendus Geoscience, 339, 274–287.CrossRefGoogle Scholar
  69. Levrard, B., and Laskar, J., 2003. Climate friction and the Earth’s obliquity. Geophysical Journal International, 154, 970–990.CrossRefGoogle Scholar
  70. Lewis, J. P., Weaver, A. J., and Eby, M., 2006. Deglaciating the snowball Earth: sensitivity to surface albedo. Geophysical Research Letters, 33, L23604, doi: 10.1029/2006GL027774.Google Scholar
  71. Lewis, J. P., Weaver, A. J., and Eby, M., 2007. Snowball versus slushball Earth: dynamic versus nondynamic sea ice? Journal of Geophysical Research, 112, C11014, doi: 10.1029/2006JC004037.Google Scholar
  72. Li, Z. X., Evans, D. A. D., and Zhang, S., 2004. A 90° spin on Rodinia: possible causal links between the Neoproterozoic supercontinent, superplume, true polar wander and low-latitude glaciation. Earth and Planetary Science Letters, 220, 409–421.CrossRefGoogle Scholar
  73. Li, Z. X., Bogdanova, S. V., Collins, A. S., Davidson, A., De Waele, B., Ernst, R. E., Fitzsimons, I. C. W., Fuck, R. A., Gladkochub, D. P., Jacobs, J., Karlstrom, K. E., Lu, S., Natapov, L. M., Pease, V., Pisarevsky, S. A., Thrane, K., and Vernikovsky, V., 2008. Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Research, 160, 179–210.CrossRefGoogle Scholar
  74. Liang, M. C., Hartman, H., Kopp, R. E., Kirschvink, J. L., and Yung, Y. L., 2006. Production of hydrogen peroxide in the atmosphere of the Snowball Earth and the origin of oxygenic photosynthesis. Proceedings of the National Academy of Sciences (USA), 103(50), 18896–18899.CrossRefGoogle Scholar
  75. Love, G. D., Grosjean, E., Stalvies, C., Fike, D. A., Grotzinger, J. P., Bradley, A. S., Kelly, A. E., Bhatia, M., Meredith, W., Snape, C. E., Bowring, S. A., Condon, D. J., and Summons, R. E., 2009. Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature, 457, 718–722.CrossRefGoogle Scholar
  76. Maloof, A. C., Kellogg, J. B., and Anders, A. M., 2002. Neoproterozoic sand wedges: crack formation in frozen soils under diurnal forcing during a snowball Earth. Earth and Planetary Science Letters, 204, 1–15.CrossRefGoogle Scholar
  77. Martin, H., 1964. Observations concerning the problem of the late Precambrian glacial deposits in South West Africa (in German with English summary). Geologische Rundschau, 54, 115–127.CrossRefGoogle Scholar
  78. Néron de Surgy, O., and Laskar, J., 1997. On the long term evolution of the spin of the Earth. Astronomy and Astrophysics, 318, 975–989.Google Scholar
  79. North, G. R., 1990. Multiple solutions in energy balance climate models. Palaeogeography, Palaeoclimatology, Palaeoecology Global and Planetary Change Section, 82, 225–235.CrossRefGoogle Scholar
  80. Ojakangas, R. W., 1988. Glaciation: an uncommon “mega-event as a key to intracontinental and intercontinental correlation of early Proterozoic basin fill, North America and Baltic cratons. In Kleinspehn, K. L., and Paola, C. (eds.), New Perspectives in Basin Analysis. New York: Springer, pp. 431–444.CrossRefGoogle Scholar
  81. Opdyke, B. N., and Wilkinson, B. H., 1990. Paleolatitude distribution of Phanerozoic marine ooids and cements. Palaeogeography, Palaeoclimatology, Palaeoecology, 78, 135–148.CrossRefGoogle Scholar
  82. Pais, M. A., Le Mouël, J. L., Lambeck, K., and Poirier, J. P., 1999. Late Precambrian paradoxical glaciation and obliquity of the Earth – a discussion of dynamical constraints. Earth and Planetary Science Letters, 174, 155–171.CrossRefGoogle Scholar
  83. Pavlov, A. A., Hurtgen, M. T., Kasting, J. F., and Arthur, M. A., 2003. Methane-rich Proterozoic atmosphere? Geology, 31, 87–90.CrossRefGoogle Scholar
  84. Pavlov, A. A., Kasting, J. F., Brown, L. L., Rages, K. A., and Freedman, R., 2000. Greenhouse warming by CH4 in the atmosphere of early Earth. Journal of Geophysical Research, 105, 11,981–11,990.CrossRefGoogle Scholar
  85. Pavlov, A. A., Toon, O. B., Pavlov, A. K., Bally, J., and Pollard, D., 2005. Passing through a giant molecular cloud: “Snowball” glaciations produced by interstellar dust. Geophysical Research Letters, 32, L03705, 10.1029/2004GL021890.Google Scholar
  86. Peltier, W. R., Tarasov, L., Vettoretti, G., and Solheim, L. P., 2004. Climate dynamics in deep time: modeling the “snowball bifurcation” and assessing the plausibility of its occurrence. In Jenkins, G. S., McMenamin, M. A. S., McKey, C. P., and Sohl, L. (eds.), The Extreme Proterozoic: Geology, Geochemistry, and Climate. Geophysical Monograph. Washington: American Geophysical Union, Vol. 146, pp. 107–124.CrossRefGoogle Scholar
  87. Peterson, K. J., and Butterfield, N. J., 2005. Origin of the Eumetazoa: testing ecological predictions of molecular clocks against the Proterozoic fossil record. Proceedings of the National Academy of Sciences (USA), 102, 9547–9552.CrossRefGoogle Scholar
  88. Peterson, K. J., McPeek, M. A., and Evans, D. A. D., 2005. Tempo and mode of early animal evolution: inferences from rocks, Hox, and molecular clocks. Paleobiology, 31, 36–55.CrossRefGoogle Scholar
  89. Pierrehumbert, R. T., 2005. Climate dynamics of a hard snowball Earth. Journal of Geophysical Research, 110, D01111, 10.1029/2004JD005162.Google Scholar
  90. Pollard, D., and Kasting, J. F., 2004. Climate-ice sheet simulations of Neoproterozoic glaciation before and after collapse to Snowball Earth. In Jenkins, G. S., McMenamin, M. A. S., McKey, C. P., and Sohl, L. (eds.), The Extreme Proterozoic: Geology, Geochemistry, and Climate. Geophysical Monograph. Washington: American Geophysical Union, Vol. 146, pp. 91–105.CrossRefGoogle Scholar
  91. Pollard, D., and Kasting, J. F., 2005. Snowball Earth: a thin-ice solution with flowing glaciers. Journal of Geophysical Research, 110, C07010: 10.1029/2004JC002525.Google Scholar
  92. Poulsen, C., and Jacob, R., 2004. Factors that inhibit snowball Earth simulation. Paleoceanography, 19, PA4021, doi: 10.1029/2004PA001056.Google Scholar
  93. Rashby, S. E., Sessions, A. L., Summons, R. E., and Newman, D. K., 2007. Biosynthesis of 2-methylbacteriohopanepolyols by an anoxygenic phototroph. Proceedings of the National Academy of Sciences (USA), 104, 15099–15104.CrossRefGoogle Scholar
  94. Ridgwell, A. J., Kennedy, M. J., and Caldeira, K., 2003. Carbonate deposition, climate stability, and Neoproterozoic ice ages. Science, 302, 859–862.CrossRefGoogle Scholar
  95. Roberts, J. D., 1971. Late Precambrian glaciation: an anti-greenhouse effect? Nature, 234, 216.CrossRefGoogle Scholar
  96. Rokas, A., Krüger, D., and Carroll, S. B., 2005. Animal evolution and the molecular signature of radiations compressed in time. Science, 310, 1933–1938.CrossRefGoogle Scholar
  97. Schmidt, P. W., and Williams, G. E., 1995. The Neoproterozoic climatic paradox: equatorial paleolatitude for Marinoan glaciation near sea level in South Australia. Earth and Planetary Science Letters, 134, 107–124.CrossRefGoogle Scholar
  98. Schrag, D. P., Berner, R. A., Hoffman, P. F., and Halverson, G. P., 2002. On the initiation of a snowball Earth. Geophysics, Geochemistry, Geosystems, 3, 10.1029/2001GC000219.Google Scholar
  99. Scott, C., Lyons, T. W., Bekker, A., Shen, Y., Poulton, S. W., Chu, X., and Anbar, A. D., 2008. Tracing stepwise oxygenation of the Proterozoic biosphere. Nature, 452, 456–460.CrossRefGoogle Scholar
  100. Sheldon, R. P., 1984. Ice-ring origin of the Earth’s atmosphere and hydrosphere and Late Proterozoic–Cambrian hypothesis. Geological Survey of India Special Publication, 17, 17–21.Google Scholar
  101. Shields, G. A., 2005. Neoproterozoic cap carbonates: a critical appraisal of existing models and the plumeworld hypothesis. Terra Nova, 17, 299–310.CrossRefGoogle Scholar
  102. Shields, G. A., Deynoux, M., Strauss, H., Paquet, H., and Nahon, D., 2007. Barite-bearing cap dolostone of the Taoudéni Basin, northwest Africa: sedimentary and isotopic evidence for methane seepage after a Neoproterozoic glaciation. Precambrian Research, 154, 209–235.CrossRefGoogle Scholar
  103. Stoeck, T., Kasper, J., Bunge, J., Leslin, C., Ilyin, V., and Epstein, S., 2007. Protistan diversity in the Arctic: a case of palaeclimate shaping of modern biodiversity? PloS ONE, 2(8), e728. doi: 10.1371/journal.pone.0000728.Google Scholar
  104. Summons, R. E., Jahnke, L. L., Hope, J. M., and Logan, G. A., 1999. 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature, 400, 554–557.CrossRefGoogle Scholar
  105. Trindade, R. I. F., and Macouin, M., 2007. Paleolatitude of glacial deposits and paleogeography of Neoproterozoic ice ages. Comptes Rendus Geoscience, 339, 200–211.CrossRefGoogle Scholar
  106. Vieira, L. C., Trindade, R. I. F., Nogueira, A. C. R., and Ader, M., 2007. Identification of a Sturtian cap carbonate in the Neoproterozoic Sete Lagoas carbonate platform, Bambuí Group, Brazil. Comptes Rendus Geoscience, 339, 240–258.CrossRefGoogle Scholar
  107. Vincent, W. F., Mueller, D. R., and Bonilla, S., 2004. Ecosystems on ice: the microbial ecology of Markham Ice Shelf in the high Arctic. Cryobiology, 48, 103–112.CrossRefGoogle Scholar
  108. Walker, J. C. G., Hays, P. B., and Kasting, J. F., 1981. A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. Journal of Geophysical Research, 86(C10), 9776–9782.CrossRefGoogle Scholar
  109. Warren, S. G., Brandt, R. E., Grenfell, T. C., and McKay, C. P., 2002. Snowball Earth: ice thickness on the tropical ocean. Journal of Geophysical Research, 107(C10), 10.1029/2001JC001123.Google Scholar
  110. Williams, G. E., 1975. Late Precambrian glacial climate and the Earth’s obliquity. Geological Magazine, 112, 441–544.CrossRefGoogle Scholar
  111. Williams, G. E., 2000. Geological constraints on the Precambrian history of Earth’s rotation and the Moon’s orbit. Reviews of Geophysics, 38(1), 37–59.CrossRefGoogle Scholar
  112. Williams, D. M., Kasting, J. F., and Frakes, L. A., 1998. Low-latitude glaciation and rapid changes in the Earth’s obliquity explained by obliquity–oblateness feedback. Nature, 396, 453–455.CrossRefGoogle Scholar
  113. Yin, L., Zhu, M., Knoll, A. H., Yuan, X., Zhang, J., and Hu, J., 2007. Doushantuo embryos preserved inside diapause egg cysts. Nature, 446, 661–663.CrossRefGoogle Scholar
  114. Yoshioka, H., Asahara, Y., Tojo, B., and Kawakami, S., 2003. Systematic variations in C, O, and Sr isotopes and elemental concentrations in Neoproterozoic carbonates in Namibia: implications for a glacial to interglacial transition. Precambrian Research, 124, 69–85.CrossRefGoogle Scholar
  115. Zhang, S., Jiang, G., and Han, Y., 2008. The age of the Nantuo Formation and Nantuo glaciation in South China. Terra Nova, 20, 289–294.CrossRefGoogle Scholar
  116. Ziegler, A. M., Hulver, M. L., Lottes, A. L., and Schmachtenberg, W. F., 1984. Uniformitarianism and paleoclimates: inferences from the distribution of carbonate rocks. In Brenchley, P. J. (ed.), Fossils and Climate. New York: Wiley, pp. 3–25.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Paul F. Hoffman
    • 1
  1. 1.Department of Earth & Planetary SciencesHarvard UniversityCambridgeUSA