Skip to main content

Siderophores

  • Reference work entry
Encyclopedia of Geobiology

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

Siderophores are low molecular weight iron-specific organic ligands that are exuded by iron-limited organisms as part of a high-affinity iron acquisition strategy.

Introduction

Iron is a nutrient to almost all known organisms. Even though iron is the fourth most abundant element on earth, the acquisition of this nutrient poses a serious challenge to organisms in many natural environments. A particularly iron-depleted system is the photic zone of the marine water column (Kraemer et al., 2005). Here, soluble iron is removed by biological uptake and subsequent sinking of the biomass below the mixed zone. In ocean areas with particularly low iron concentrations relative to other nutrients in the photic zone, the primary productivity is limited by the low bioavailability of iron. This marine iron limitation may affect the global climate by limiting the efficiency of the marine carbon pump. However, even in soils that contain abundant iron-bearing mineral phases, iron acquisition...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Andrews, S. C., Robinson, A. K., and Rodriguez-Quinones, F., 2003. Bacterial iron homeostasis. FEMS Microbiology Ecology, 27, 215–237.

    Article  Google Scholar 

  • Barbeau, K., 2006. Photochemistry of organic iron(III) complexing ligands in oceanic systems. Photochemistry and Photobiology, 82, 1505–1516.

    Google Scholar 

  • Bellenger, J. P., Wichard, T., Kustka, A. B., and Kraepiel, A. M. L., 2008. Uptake of molybdenum and vanadium by a nitrogen-fixing soil bacterium using siderophores. Nature Geoscience, 1, 243–246.

    Article  Google Scholar 

  • Borer, P., Sulzberger, B., Reichard, P. U., and Kraemer, S. M., 2005. Effect of siderophores on the light-induced dissolution of colloidal iron(III)(hydr)oxides. Marine Chemistry, 93, 179–193.

    Article  Google Scholar 

  • Boukhalfa, H., Reilly, S. D., and Neu, M. P., 2007. Complexation of Pu(IV) with the natural siderophore Desferrioxamine B and the redox properties of Pu(IV)(siderophore) complexes. Inorganic Chemistry, 46, 1018–1026.

    Article  Google Scholar 

  • Cheah, S. F., Kraemer, S. M., Cervini-Silva, J., and Sposito, G., 2003. Steady-state dissolution kinetics of goethite in the presence of desferrioxamine B and oxalate ligands: implications for the microbial acquisition of iron. Chemical Geology, 198, 63–75.

    Article  Google Scholar 

  • Curie, C., Panaviene, Z., Loulergue, C., Dellaporta, S. L., Briat, J. -F., and Walker, E. L., 2001. Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature, 409, 346–349.

    Article  Google Scholar 

  • Duckworth, O. W., and Sposito, G., 2005. Siderophore-manganese(III) interactions. I. Air-oxidation of manganese(II) promoted by desferrioxamine B. Environmental Science Technology, 39, 6037–6044.

    Article  Google Scholar 

  • Essen, S. A., Bylund, D., Holmstrom, S. J. M., Moberg, M., and Lundstrom, U. S., 2006. Quantification of hydroxamate siderophores in soil solutions of podzolic soil profiles in Sweden. Biometals, 19, 269–282.

    Article  Google Scholar 

  • Hantke, K., 2001. Iron and metal regulation in bacteria. Current Opinion in Microbiology, 4, 172–177.

    Article  Google Scholar 

  • John, S. G., Ruggiero, C. E., Hersman, L. E., Tung, C. S., and Neu, M. P., 2001. Siderophore mediated plutonium accumulation by Microbacterium flavescens (JG-9). Environmental Science Technology, 35, 2942–2948.

    Article  Google Scholar 

  • Kim, H. J., Graham, D. W., DiSpirito, A. A., Alterman, M. A., Galeva, N., Larive, C. K., Asunskis, D., and Sherwood, P. M. A., 2004. Methanobactin, a copper-acquisition compound from methane-oxidizing bacteria. Science, 305, 1612–1615.

    Article  Google Scholar 

  • Kraemer, S. M., 2004. Iron oxide dissolution and solubility in the presence of siderophores. Aquatic Science, 66, 3–18.

    Article  Google Scholar 

  • Kraemer, S. M., Cheah, S. F., Zapf, R., Xu, J. D., Raymond, K. N., and Sposito, G., 1999. Effect of hydroxamate siderophores on Fe release and Pb(II) adsorption by goethite. Geochimica et Cosmochimica Acta, 63, 3003–3008.

    Article  Google Scholar 

  • Kraemer, S. M., Butler, A., Borer, P., and Cervini-Silva, J., 2005. Siderophores and the dissolution of iron bearing minerals in marine systems. Reviews in Mineralogy and Geochemistry, 59, 53–76.

    Article  Google Scholar 

  • Kraemer, S. M., Crowley, D., and Kretzschmar, R., 2006. Siderophores in plant iron acquisition: geochemical aspects. Advances in Agronomy, 91, 1–46.

    Article  Google Scholar 

  • Liermann, L. J., Kalinowski, B. E., Brantley, S. L., and Ferry, J. G., 2000. Role of bacterial siderophores in dissolution of hornblende. Geochimica et Cosmochimica Acta, 64, 587–602.

    Article  Google Scholar 

  • Liu, X. W., and Millero, F. J., 2002. The solubility of iron in seawater. Marine Chemistry, 77, 43–54.

    Article  Google Scholar 

  • Martell, A. E., Smith, R. M., and Motekaitis, R. J., 2001. NIST critically selected stability constants of metal complexes database. Gaithersburg MD: NIST. http://www.nist.gov/srd/WebGuide/Critical/46_8.htm.

  • Martinez, J. S., and Butler, A., 2007. Marine amphiphilic siderophores: marinobactin structure, uptake, and microbial partitioning. Journal of Inorganic Biochemistry, 101, 1692–1698.

    Article  Google Scholar 

  • Miethke, M., and Marahiel, M. A., 2007. Siderophore-based iron acquisition and pathogen control. Microbiology and Molecular Biology Reviews, 71, 413–451.

    Article  Google Scholar 

  • Powell, P. E., Cline, G. R., Reid, C. P. P., and Szaniszlo, P. J., 1980. Occurrence of hydroxamate siderophore iron chelators in soils. Nature, 287, 833–834.

    Article  Google Scholar 

  • Reichard, P. U., Kraemer, S. M., Frazier, S. W., and Kretzschmar, R., 2005. Goethite dissolution in the presence of phytosiderophores: rates, mechanisms, and the synergistic effect of oxalate. Plant and Soil, 276, 115–132.

    Article  Google Scholar 

  • Reichard, P. U., Kretzschmar, R., and Kraemer, S. M., 2007. Dissolution mechanisms of goethite in the presence of siderophores and organic acids. Geochimica et Cosmochimica Acta, 71, 5635–5650.

    Article  Google Scholar 

  • Römheld, V., 1991. The role of phytosiderophores in acquisition of iron and other micronutrients in gramineous species – an ecological approach. Plant Soil, 130, 127–134.

    Article  Google Scholar 

  • Rosenberg, D. R., and Maurice, P. A., 2003. Siderophore adsorption to and dissolution of kaolinite at pH 3 to 7 and 22 degrees C. Geochimica et Cosmochimica Acta, 67, 223–229.

    Article  Google Scholar 

  • Rue, E. L., and Bruland, K. W., 1995. Complexation of iron(III) by natural organic-ligands in the central North Pacific as determined by a new competitive ligand equilibration adsorptive cathodic stripping voltammetric method. Marine Chemistry, 50, 117–138.

    Article  Google Scholar 

  • Schaaf, G., Erenoglu, B., and von Wiren, N., 2004. Physiological and biochemical characterization of metal-phytosiderophore transport in graminaceous species. Soil Science and Plant Nutrition, 50, 989–995.

    Article  Google Scholar 

  • Takagi, S. I., 1976. Naturally occurring iron-chelating compounds in oat-root and rice-root washings.1. Activity measurement and preliminary characterization. Soil Science and Plant Nutrition, 22, 423–433.

    Article  Google Scholar 

  • Takagi, S., Nomoto, K., and Takemoto, T., 1984. Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants. Journal Of Plant Nutrition, 7, 469–477.

    Article  Google Scholar 

  • Völker, C., and Wolf-Gladrow, D. A., 1999. Physical limits on iron uptake mediated by siderophores or surface reductases. Marine Chemistry, 65, 227–244.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Kraemer, S.M. (2011). Siderophores. In: Reitner, J., Thiel, V. (eds) Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9212-1_186

Download citation

Publish with us

Policies and ethics