Encyclopedia of Geobiology

2011 Edition
| Editors: Joachim Reitner, Volker Thiel


  • Stephan M. Kraemer
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-9212-1_186


Siderophores are low molecular weight iron-specific organic ligands that are exuded by iron-limited organisms as part of a high-affinity iron acquisition strategy.


Iron is a nutrient to almost all known organisms. Even though iron is the fourth most abundant element on earth, the acquisition of this nutrient poses a serious challenge to organisms in many natural environments. A particularly iron-depleted system is the photic zone of the marine water column (Kraemer et al., 2005). Here, soluble iron is removed by biological uptake and subsequent sinking of the biomass below the mixed zone. In ocean areas with particularly low iron concentrations relative to other nutrients in the photic zone, the primary productivity is limited by the low bioavailability of iron. This marine iron limitation may affect the global climate by limiting the efficiency of the marine carbon pump. However, even in soils that contain abundant iron-bearing mineral phases, iron acquisition...


Iron Complex Iron Acquisition Ligate Group Siderophore Complex Microbial Siderophores 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Andrews, S. C., Robinson, A. K., and Rodriguez-Quinones, F., 2003. Bacterial iron homeostasis. FEMS Microbiology Ecology, 27, 215–237.CrossRefGoogle Scholar
  2. Barbeau, K., 2006. Photochemistry of organic iron(III) complexing ligands in oceanic systems. Photochemistry and Photobiology, 82, 1505–1516.Google Scholar
  3. Bellenger, J. P., Wichard, T., Kustka, A. B., and Kraepiel, A. M. L., 2008. Uptake of molybdenum and vanadium by a nitrogen-fixing soil bacterium using siderophores. Nature Geoscience, 1, 243–246.CrossRefGoogle Scholar
  4. Borer, P., Sulzberger, B., Reichard, P. U., and Kraemer, S. M., 2005. Effect of siderophores on the light-induced dissolution of colloidal iron(III)(hydr)oxides. Marine Chemistry, 93, 179–193.CrossRefGoogle Scholar
  5. Boukhalfa, H., Reilly, S. D., and Neu, M. P., 2007. Complexation of Pu(IV) with the natural siderophore Desferrioxamine B and the redox properties of Pu(IV)(siderophore) complexes. Inorganic Chemistry, 46, 1018–1026.CrossRefGoogle Scholar
  6. Cheah, S. F., Kraemer, S. M., Cervini-Silva, J., and Sposito, G., 2003. Steady-state dissolution kinetics of goethite in the presence of desferrioxamine B and oxalate ligands: implications for the microbial acquisition of iron. Chemical Geology, 198, 63–75.CrossRefGoogle Scholar
  7. Curie, C., Panaviene, Z., Loulergue, C., Dellaporta, S. L., Briat, J. -F., and Walker, E. L., 2001. Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature, 409, 346–349.CrossRefGoogle Scholar
  8. Duckworth, O. W., and Sposito, G., 2005. Siderophore-manganese(III) interactions. I. Air-oxidation of manganese(II) promoted by desferrioxamine B. Environmental Science Technology, 39, 6037–6044.CrossRefGoogle Scholar
  9. Essen, S. A., Bylund, D., Holmstrom, S. J. M., Moberg, M., and Lundstrom, U. S., 2006. Quantification of hydroxamate siderophores in soil solutions of podzolic soil profiles in Sweden. Biometals, 19, 269–282.CrossRefGoogle Scholar
  10. Hantke, K., 2001. Iron and metal regulation in bacteria. Current Opinion in Microbiology, 4, 172–177.CrossRefGoogle Scholar
  11. John, S. G., Ruggiero, C. E., Hersman, L. E., Tung, C. S., and Neu, M. P., 2001. Siderophore mediated plutonium accumulation by Microbacterium flavescens (JG-9). Environmental Science Technology, 35, 2942–2948.CrossRefGoogle Scholar
  12. Kim, H. J., Graham, D. W., DiSpirito, A. A., Alterman, M. A., Galeva, N., Larive, C. K., Asunskis, D., and Sherwood, P. M. A., 2004. Methanobactin, a copper-acquisition compound from methane-oxidizing bacteria. Science, 305, 1612–1615.CrossRefGoogle Scholar
  13. Kraemer, S. M., 2004. Iron oxide dissolution and solubility in the presence of siderophores. Aquatic Science, 66, 3–18.CrossRefGoogle Scholar
  14. Kraemer, S. M., Cheah, S. F., Zapf, R., Xu, J. D., Raymond, K. N., and Sposito, G., 1999. Effect of hydroxamate siderophores on Fe release and Pb(II) adsorption by goethite. Geochimica et Cosmochimica Acta, 63, 3003–3008.CrossRefGoogle Scholar
  15. Kraemer, S. M., Butler, A., Borer, P., and Cervini-Silva, J., 2005. Siderophores and the dissolution of iron bearing minerals in marine systems. Reviews in Mineralogy and Geochemistry, 59, 53–76.CrossRefGoogle Scholar
  16. Kraemer, S. M., Crowley, D., and Kretzschmar, R., 2006. Siderophores in plant iron acquisition: geochemical aspects. Advances in Agronomy, 91, 1–46.CrossRefGoogle Scholar
  17. Liermann, L. J., Kalinowski, B. E., Brantley, S. L., and Ferry, J. G., 2000. Role of bacterial siderophores in dissolution of hornblende. Geochimica et Cosmochimica Acta, 64, 587–602.CrossRefGoogle Scholar
  18. Liu, X. W., and Millero, F. J., 2002. The solubility of iron in seawater. Marine Chemistry, 77, 43–54.CrossRefGoogle Scholar
  19. Martell, A. E., Smith, R. M., and Motekaitis, R. J., 2001. NIST critically selected stability constants of metal complexes database. Gaithersburg MD: NIST. http://www.nist.gov/srd/WebGuide/Critical/46_8.htm.
  20. Martinez, J. S., and Butler, A., 2007. Marine amphiphilic siderophores: marinobactin structure, uptake, and microbial partitioning. Journal of Inorganic Biochemistry, 101, 1692–1698.CrossRefGoogle Scholar
  21. Miethke, M., and Marahiel, M. A., 2007. Siderophore-based iron acquisition and pathogen control. Microbiology and Molecular Biology Reviews, 71, 413–451.CrossRefGoogle Scholar
  22. Powell, P. E., Cline, G. R., Reid, C. P. P., and Szaniszlo, P. J., 1980. Occurrence of hydroxamate siderophore iron chelators in soils. Nature, 287, 833–834.CrossRefGoogle Scholar
  23. Reichard, P. U., Kraemer, S. M., Frazier, S. W., and Kretzschmar, R., 2005. Goethite dissolution in the presence of phytosiderophores: rates, mechanisms, and the synergistic effect of oxalate. Plant and Soil, 276, 115–132.CrossRefGoogle Scholar
  24. Reichard, P. U., Kretzschmar, R., and Kraemer, S. M., 2007. Dissolution mechanisms of goethite in the presence of siderophores and organic acids. Geochimica et Cosmochimica Acta, 71, 5635–5650.CrossRefGoogle Scholar
  25. Römheld, V., 1991. The role of phytosiderophores in acquisition of iron and other micronutrients in gramineous species – an ecological approach. Plant Soil, 130, 127–134.CrossRefGoogle Scholar
  26. Rosenberg, D. R., and Maurice, P. A., 2003. Siderophore adsorption to and dissolution of kaolinite at pH 3 to 7 and 22 degrees C. Geochimica et Cosmochimica Acta, 67, 223–229.CrossRefGoogle Scholar
  27. Rue, E. L., and Bruland, K. W., 1995. Complexation of iron(III) by natural organic-ligands in the central North Pacific as determined by a new competitive ligand equilibration adsorptive cathodic stripping voltammetric method. Marine Chemistry, 50, 117–138.CrossRefGoogle Scholar
  28. Schaaf, G., Erenoglu, B., and von Wiren, N., 2004. Physiological and biochemical characterization of metal-phytosiderophore transport in graminaceous species. Soil Science and Plant Nutrition, 50, 989–995.CrossRefGoogle Scholar
  29. Takagi, S. I., 1976. Naturally occurring iron-chelating compounds in oat-root and rice-root washings.1. Activity measurement and preliminary characterization. Soil Science and Plant Nutrition, 22, 423–433.CrossRefGoogle Scholar
  30. Takagi, S., Nomoto, K., and Takemoto, T., 1984. Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants. Journal Of Plant Nutrition, 7, 469–477.CrossRefGoogle Scholar
  31. Völker, C., and Wolf-Gladrow, D. A., 1999. Physical limits on iron uptake mediated by siderophores or surface reductases. Marine Chemistry, 65, 227–244.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Stephan M. Kraemer
    • 1
  1. 1.Department of Environmental GeosciencesUniversity of ViennaViennaAustria