Encyclopedia of Geobiology

2011 Edition
| Editors: Joachim Reitner, Volker Thiel


  • Jürgen Schieber
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-9212-1_182


Historically, the term shale has been used to describe fine-grained sedimentary rocks of largely terrigenous derivation, dominated by mud-size particles (0.06 mm and smaller) and containing appreciable quantities (several 10%) of clay minerals . The definition of the term has been a subject of debate (Potter et al., 2005) because of the closely allied terms mud and clay for which competing definitions may emphasize grain size, mineralogy (clay dominated), or physical properties (plasticity ). In place of shale, the term mudstone is also used widely and describes the same compositional spectrum of sedimentary rocks. Because shales span the clay–silt boundary, a good many rocks that are identified as siltstones in the literature also qualify as shales (and vice versa). Although the term shale traditionally had a “terrigenous” connotation, shales that accumulated in sediment starved settings may to more than 50% consist of microbially induced early diagenetic cements...


Black Shale Iron Sulfide Organic Geochemistry Internal Surface Area Iron Sulfide Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Aller, R. C., 1998. Mobile deltaic and continental shelf muds as suboxic, fluidized bed reactors. Marine Chemistry, 61, 143–155.CrossRefGoogle Scholar
  2. Allison, P. A., 1988. The role of anoxia in the decay and mineralization of proteinaceous macrofossils. Paleobiology, 14, 139–154.Google Scholar
  3. Bartels, C., Briggs, D. E. G., and Brassel, G., 1998. The Fossils of the Hunsrück Slate - Marine Life in the Devonian. Cambridge: Cambridge University Press, p. 309.Google Scholar
  4. Blatt, H., Middleton, G., and Murray, R., 1980. Origin of Sedimentary Rocks. Englewood Cliffs: Prentice Hall, 782 p.Google Scholar
  5. Brassell, S. C., 1992. Biomarkers in sediments, sedimentary rocks and petroleums. In Pratt, L. M., Brassell, S. C., and Comer, J. B. (eds.), Geochemistry of Organic Matter in Sediments and Sedimentary Rocks. SEPM Short Course Notes 27. Tulsa: Society for Sedimentary Geology, pp. 29–72.CrossRefGoogle Scholar
  6. Brett, C., and Allison, P. A., 1998. Paleontological approaches to the environmental interpretation of marine mudrocks. In Schieber, J., Zimmerle, W., and Sethi, P.  (eds.), Shales and Mudstones. Basin Studies, Sedimentology and Paleontology, Stuttgart: Schweizerbart’sche Verlagsbuchhandlung, Vol. 1, pp. 301–349.Google Scholar
  7. Calvert, S. E., Bustin, R. M., and Ingall, E. D., 1996. Influence of water column anoxia and sediment supply on the burial and preservation of organic carbon in marine shales. Geochimica et Cosmochimica Acta, 60, 1577–1593.CrossRefGoogle Scholar
  8. Cole, R. D., and Picard, M. D., 1975. Primary and secondary sedimentary structures in oil shale and other fine-grained rocks, Green River Formation (Eocene), Utah and Colorado. Utah Geology, 2, 49–67.Google Scholar
  9. Cuomo, M. C., and Bartholomew, P. R., 1991. Pelletal black shale fabrics: their origin and significance. In Tyson, R. V., and Pearson, T. H. (eds.), Modern and Ancient Continental Shelf Anoxia. London: Geological Society, Special Publication No. 58, pp. 221–232.Google Scholar
  10. Cuomo, M. C., and Rhoads, D. C., 1987. Biogenic sedimentary fabrics associated with pioneering polychaete assemblages: modern and ancient. Journal of Sedimentary Petrology, 57, 537–543.Google Scholar
  11. Curtis, C. D., Cope, J. C. W., Plant, D., and Macquaker, J. H. S., 2000. “Instantaneous” sedimentation, early microbial sediment strengthening and a lengthy record of chemical diagenesis preserved in Lower Jurassic ammonitiferous concretions from Dorset. Journal of the Geological Society, London, 157, 165–172.CrossRefGoogle Scholar
  12. Dunbar, C. O., and Rodgers, J., 1957. Principles of Stratigraphy. New York: Wiley, 356 p.Google Scholar
  13. Engel, M. H., and Macko, S. A., 1993. Organic Geochemistry: Principles and Applications. New York: Plenum Press, 861 p.CrossRefGoogle Scholar
  14. Fenchel, T., 1970. Studies on the decomposition of organic detritus derived from the turtle grass Thalassia testudinum. Limnology and Oceanography, 15, 14–20.Google Scholar
  15. Folk, R. L., 1965. Petrology of Sedimentary Rocks. Austin: Hemphill’s Bookstore, 170 p.Google Scholar
  16. Ingram, R. L., 1953. Fissility in mudrocks. Geological Society of America Bulletin, 65, 869–878.CrossRefGoogle Scholar
  17. Jones, B., and Manning, D. A. C., 1994. Comparisons of geochemical indices used for the interpretation of paleoredox conditions in ancient mudstones. Chemical Geology, 111, 111–129.CrossRefGoogle Scholar
  18. Kauffman, E. G., 1978. Benthic environments and paleoecology of the Posidonienschiefer (Toarcian). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 157, 18–36.Google Scholar
  19. Lewan, M. D., 1979. Laboratory classification of very fine-grained sedimentary rocks. Geology, 6, 745–748.CrossRefGoogle Scholar
  20. Lundegard, P. D., and Samuels, N. D., 1980. Field classification of fine-grained sedimentary rocks. Journal of Sedimentary Petrology, 50, 781–786.Google Scholar
  21. Macquaker, J. H. S., and Adams, A. E., 2003. Maximizing information from fine-grained sedimentary rocks: an inclusive nomenclature for mudstones. Journal of Sedimentary Research, 73, 735–744.CrossRefGoogle Scholar
  22. Morris, S. C., 1998. The Crucible of Creation: The Burgess Shale and the Rise of Animals. Oxford: Oxford University Press, 276 p.Google Scholar
  23. Nanson, C. G., Rust, B. R., and Taylor, G., 1986. Coexistent mud braids and anostomosing channels in an arid-zone river: Cooper Creek, central Australia. Geology, 14, 175–178.CrossRefGoogle Scholar
  24. O’Brien, N. R., 1990. Significance of lamination in Toarcian (Lower Jurassic) shales from Yorkshire, Great Britain. Sedimentary Geology, 67, 25–34.CrossRefGoogle Scholar
  25. O’Brien, N. R., and Slatt, R. M., 1990. Argillaceous Rock Atlas. New York: Springer, 141 p.CrossRefGoogle Scholar
  26. Picard, M. D., 1971. Classification of fine grained sedimentary rocks. Journal of Sedimentary Petrology, 41, 179–195.Google Scholar
  27. Potter, P. E., Maynard, J. B., and Pryor, W. A., 1980. Sedimentology of Shale. New York: Springer, 303 p.CrossRefGoogle Scholar
  28. Potter, P. E., Maynard, J. B., and Depetris, P. J., 2005. Mud and Mudstones. New York: Springer, 297 p.Google Scholar
  29. Pryor, W. A., 1975. Biogenic sedimentation and alteration of argillaceous sediments in shallow marine environments. Geological Society of America Bulletin, 86, 1244–1254.CrossRefGoogle Scholar
  30. Ransom, B., Bennett, R. H., Baerwald, R., Hulbert, M. H., and Burkett, P. J., 1999. In situ conditions and interactions between microbes and minerals in fine-grained marine sediments; a TEM microfabric perspective. American Mineralogist, 84, 183–192.Google Scholar
  31. Reineck, H. E., and Singh, I. B., 1980. Depositional Sedimentary Environments. Berlin: Springer, 549 p.CrossRefGoogle Scholar
  32. Roser, B. P., and Korsch, R. J., 1986. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. Journal of Geology, 94, 635–650.CrossRefGoogle Scholar
  33. Rust, B. R., and Nanson, G. C., 1989. Bedload transport of mud as pedogenic aggregates in modern and ancient rivers. Sedimentology, 36, 291–306.CrossRefGoogle Scholar
  34. Schieber, 1985. The Relationship between Basin Evolution and Genesis of stratiform Sulfide Horizons in Mid-Proterozoic Sediments of Central Montana (Belt Supergroup). PhD dissertation, University of Oregon, Eugene, 811 p.Google Scholar
  35. Schieber, J., 1986. The possible role of benthic microbial mats during the formation of carbonaceous shales in shallow Proterozoic basins. Sedimentology, 33, 521–536.CrossRefGoogle Scholar
  36. Schieber, J., 1989. Facies and origin of shales from the Mid-Proterozoic Newland Formation, Belt basin, Montana, U.S.A. Sedimentology, 36, 203–219.CrossRefGoogle Scholar
  37. Schieber, J., 1990a. Sedimentary structures, textures, and depositional settings of shales from the Lower Belt Supergroup, Mid-Proterozoic, Montana, U.S.A. In Bennett, R. H., Bryant, W. R., and M. H. Hulbert (eds.), Microstructure of Fine-Grained Sediments, New York, Springer, pp. 101–108.Google Scholar
  38. Schieber, J., 1990b. Significance of styles of epicontinental shale sedimentation in the Belt basin, Mid-Proterozoic of Montana, U.S.A. Sedimentary Geology, 69, 297–312.CrossRefGoogle Scholar
  39. Schieber, J., 1994. Reflection of deep vs shallow water deposition by small scale sedimentary features and microfabrics of the Chattanooga Shale in Tennessee. Canadian Society of Petroleum Geologists, Memoir, 17, 773–784.Google Scholar
  40. Schieber, J., 1996. Early diagenetic silica deposition in algal cysts and spores: a source of sand in black shales? Journal of Sedimentary Research, 66, 175–183.Google Scholar
  41. Schieber, J., 1999a. Distribution and deposition of mudstone facies in the Upper Devonian Sonyea Group of New York. Journal of Sedimentary Research, 69, 909–925.CrossRefGoogle Scholar
  42. Schieber, J., 1999b. Microbial mats in terrigenous clastics: the challenge of identification in the rock record. Palaios, 14, 3–12.CrossRefGoogle Scholar
  43. Schieber, J., 2003. Simple gifts and hidden treasures – implications of finding bioturbation and erosion surfaces in black shales. The Sedimentary Record, 1, 4–8.Google Scholar
  44. Schieber, J., Krinsley, D., and Riciputi, L., 2000. Diagenetic origin of quartz silt in mudstones and implications for silica cycling. Nature, 406, 981–985.CrossRefGoogle Scholar
  45. Seilacher, A., Reif, W. E., Westphal, F., Riding, R., Clarkson, E. N. K., and Whittington, H. B., 1985. Sedimentological, Ecological and Temporal Patterns of Fossil Lagerstatten [and Discussion]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, Vol. 311, No. 1148, Extraordinary Fossil Biotas: Their Ecological and Evolutionary Significance (Oct. 17, 1985), 5–24.Google Scholar
  46. Schieber, J., and Zimmerle, W., 1998. The history and promise of shale research. In Schieber, J., Zimmerle, W., and Sethi, P. (eds.), Shales and Mudstones. Basin Studies, Sedimentology and Paleontology, Stuttgart: Schweizerbart’sche Verlagsbuchhandlung, Vol. 1, pp. 1–10.Google Scholar
  47. Schieber, J., Zimmerle, W., and Sethi, P. (eds.), 1998. Shales and Mudstones. Stuttgart: Schweizerbart’sche Verlagsbuchhandlung, Vols. 1 and 2.Google Scholar
  48. Schieber, J., Southard, J. B., and Thaisen, K. G., 2007. Accretion of mudstone beds from migrating floccule ripples. Science, 318, 1760–1763.CrossRefGoogle Scholar
  49. Shen, Y., Schidlowski, M., and Chu, X. L., 2000. Biogeochemical approach to understanding phosphogenic events of the terminal Proterozoic to Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology, 158, 99–108.CrossRefGoogle Scholar
  50. Stow, D. A. V., and Piper, D. J. W., 1984. Deep-water fine-grained sediments: facies models. In Stow, D. A. V., and Piper, D. J. W. (eds.), Fine-Grained Sediments: Deep-Water Processes and Facies. London: Geological Society, Special Publication No. 15, 611–645.Google Scholar
  51. Taylor, G. H., Teichmüller, M., Davis, A., Diessel, C. F. K., Littke, R., and Robert, P., 1998. Organic Petrology. Stuttgart: Borntraeger, 704 p.Google Scholar
  52. Wetzel, A., and Uchmann, A., 1998. Biogenic sedimentary structures in mudstones – an overview. In Schieber, J., Zimmerle, W., and Sethi, P. (eds.), Shales and Mudstones. Basin Studies, Sedimentology and Paleontology. Stuttgart: Schweizerbart’sche Verlagsbuchhandlung, Vol. 1, p. 351–369.Google Scholar
  53. Wuttke, M., 1983. ‘Weichteil-Erhaltung’ durch lithifizierte Mikroorganismen bei mittel-eozänen Vertebraten aus en Ölschiefern der ‘Grube Messel’ bei Darmstadt. Senckenbergiana Lethaea, 64, 509–527.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jürgen Schieber
    • 1
  1. 1.Department of Geological SciencesIndiana UniversityBloomingtonUSA