Encyclopedia of Geobiology

2011 Edition
| Editors: Joachim Reitner, Volker Thiel

Sediment Diagenesis – Biologically Controlled

  • Kurt O. Konhauser
  • Murray K. Gingras
  • Andreas Kappler
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-9212-1_179

Definition

The biological processes that modify unconsolidated sediment after initial deposition and burial.

Overview

Throughout the sediment column, up to the temperature threshold of life, microbial activity plays an integral role in diagenesis . It is widely recognized that through their various chemoheterotrophic pathways, microorganisms are ultimately responsible for the conversion of organic carbon to CO2 and CH4 at temperatures <100oC. Some aerobic bacteria use hydrolytic enzymes to break down complex molecules into simple monomers such as sugars, amino acids, and fatty acids that they can then utilize, while most anaerobes are restricted to simple organic compounds (e.g., acetate, lactate, H2) that are the by-products of fermentation (Lovley and Chapelle, 1995). Typically, the more labile materials (e.g., proteins, carbohydrates) are degraded in near-surface sediments on time scales of days to years, and more refractory materials (e.g., lipids) are broken down deeper in the...

Keywords

Pore Water Particulate Organic Carbon Sulfate Reduction Rate Anaerobic Methane Oxidation Nitrate Pore 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Bibliography

  1. Aller, R. C., 1980. Quantifying solute distributions in the bioturbated zone of marine sediments by defining an average microenvironment. Geochimica et Cosmochimica Acta, 44, 1955–1965.CrossRefGoogle Scholar
  2. Aller, R. C., 1990. Bioturbation and manganese cycling in hemipelagic sediments. Philosophical Transactions of the Royal Society of London, 331, 51–68.Google Scholar
  3. Bender, B., and Heggie, D. T., 1984. Fate of organic carbon reaching the deep sea: a status report. Geochimica et Cosmochimica Acta, 48, 977–986.CrossRefGoogle Scholar
  4. Berner, R. A., 1982. Burial of organic carbon and pyrite sulphur in the modern ocean: its geochemical and environmental significance. American Journal of Science, 282, 451–473.CrossRefGoogle Scholar
  5. Berner, R. A., and Raiswell, R., 1983. Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: a new theory. Geochimica et Cosmochimica Acta, 47, 855–862.CrossRefGoogle Scholar
  6. Berner, R. A., and Westrich, J. T., 1985. Bioturbation and the early diagenesis of carbon and sulphur. American Journal of Science, 285, 193–206.CrossRefGoogle Scholar
  7. Blackburn, T. H., and Blackburn, N. D., 1993. Coupling of cycles and global significance of sediment diagenesis. Marine Geology, 113, 101–110.CrossRefGoogle Scholar
  8. Burdige, D. J., 1993. The biogeochemistry of manganese and iron reduction in marine sediments. Earth-Science Reviews, 35, 249–284.CrossRefGoogle Scholar
  9. Canfield, D. E., 1993. Organic matter oxidation in marine sediments. In Wollast, R., Chou, L., and Mackenzie, F. (eds.), Interactions of C, N, P and S Biogeochemical Cycles and Global Change. Berlin: Springer, pp. 333–363.CrossRefGoogle Scholar
  10. Canfield, D. E., Raiswell, R., and Bottrell, S., 1992. The reactivity of sedimentary iron minerals toward sulfide. American Journal of Science, 292, 659–683.CrossRefGoogle Scholar
  11. Chapelle, F. H., and Lovley, D. R., 1992. Competitive exclusion of sulfate reduction by Fe(III)-reducing bacteria: a mechanism for producing discrete zones of high-iron ground water. Ground Water, 30, 29–36.CrossRefGoogle Scholar
  12. Coleman, M. L., 1985. Geochemistry of diagenetic non-silicate minerals. Kinetic considerations. Philosophical Transactions of the Royal Society of London, 315, 39–56.Google Scholar
  13. Devol, A. H., 1991. Direct measurement of nitrogen gas fluxes from continental shelf sediments. Nature, 349, 319–321.CrossRefGoogle Scholar
  14. D’Hondt, S., Rutherford, S., and Spivack, A. J., 2002. Metabolic activity of subsurface life in deep-sea sediments. Science, 295, 2067–2070.CrossRefGoogle Scholar
  15. diChristina, T. J., 1992. Effects of nitrate and nitrite on dissimilatory iron reduction by Shewanella putrefaciens 200. Journal of Bacteriology, 174, 1891–1896.Google Scholar
  16. Emerson, S., and Hedges, J. I., 1988. Processes controlling the organic carbon content of open ocean sediments. Paleooceanograpghy, 3, 621–634.CrossRefGoogle Scholar
  17. Froelich, P. N. et al., 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic. Suboxic diagenesis. Geochimica et Cosmochimica Acta, 43, 1075–1090.CrossRefGoogle Scholar
  18. Hammond, D. E., Fuller, C., Harmon, D., Hartman, B., Korosec, M., Miller, L. G., Rea, R., Warren, S., Berelson, W., and Hager, S. W., 1985. Benthic fluxes in San Francisco Bay. Hydrobiologia, 129, 69–90.CrossRefGoogle Scholar
  19. Hansen, J. I., Henriksen, K., and Blackburn, T. H., 1981. Seasonal distribution of nitrifying bacteria and rates of nitrification in coastal marine sediments. Microbial Ecology, 7, 297–304.CrossRefGoogle Scholar
  20. Hedges, J. I., Clark, W. A., and Cowie, G. L., 1988. Fluxes and reactivities of organic matter in a coastal marine bay. Limnology and Oceanography, 33, 1137–1152.CrossRefGoogle Scholar
  21. Jones, J. G., 1985. Microbes and microbial processes in sediments. Philosophical Transactions of the Royal Society of London, 315, 3–17.Google Scholar
  22. Jørgensen, B. B., 1982. Mineralization of organic matter in the seabed – the role of sulfate reduction. Nature, 296, 643–645.CrossRefGoogle Scholar
  23. Jørgensen, B. B., 1990. A thiosulphate shunt in the sulfur cycle of marine sediments. Science, 249, 152–154.CrossRefGoogle Scholar
  24. Konhauser, K. O., 2007. Introduction to Geomicrobiology. Oxford: Blackwell Publishing.Google Scholar
  25. Krom, M. D., and Berner, R. A., 1980. Adsorption of phosphate in anoxic marine sediments. Limnology and Oceanography, 25, 797–806.CrossRefGoogle Scholar
  26. Leang, C., Adams, L. A., Chin, K. J., Nevin, K. P., Methé, B. A., Webster, J., Sharma, M. L., and Lovley, D. R., 2005. Adaptation to disruption of the electron transfer pathway for Fe(III) reduction in Geobacter sulfurreducens. Journal of Bacteriology, 187, 5918–5926.CrossRefGoogle Scholar
  27. Lee, C., 1992. Controls on organic carbon preservation: the use of stratified water bodies to compare intrinsic rates of decomposition in oxic and anoxic systems. Geochimica et Cosmochimica Acta, 56, 3323–3335.CrossRefGoogle Scholar
  28. Lovley, D. R., and Chapelle, F. H., 1995. Deep subsurface microbial processes. Reviews of Geophysics, 33, 365–381.CrossRefGoogle Scholar
  29. Lovley, D. R., and Goodwin, S., 1988. Hydrogen concentrations as an indicator of the predominant terminal electron-accepting reactions in aquatic sediments. Geochimica et Cosmochimica Acta, 52, 2993–3003.CrossRefGoogle Scholar
  30. Lovley, D. R., and Klug, M. J., 1986. Model for the distribution of sulfate reduction and methanogenesis in freshwater sediments. Geochimica et Cosmochimica Acta, 50, 11–18.CrossRefGoogle Scholar
  31. Lovley, D. R., and Phillips, E. J. P., 1986. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Applied and Environmental Microbiology, 51, 683–689.Google Scholar
  32. Lovley, D. R., and Phillips, E. J. P., 1987. Competitive mechanisms for inhibition of sulphate reduction and methane production in the zone of ferric iron reduction in sediments. Applied and Environmental Microbiology, 53, 2636–2641.Google Scholar
  33. Lovley, D. R., and Phillips, E. J. P., 1988. Manganese inhibition of microbial iron reduction in anaerobic sediments. Geomicrobiology Journal, 6, 145–155.CrossRefGoogle Scholar
  34. Lovley, D. R., Dwyer, D. F., and Klug, M. J., 1982. Kinetic analysis of competition between sulfate reducers and methanogens for hydrogen in sediments. Applied and Environmental Microbiology, 43, 1373–1379.Google Scholar
  35. Lovley, D. R., Holmes, D. E., and Nevin, K. P., 2004. Dissimilatory Fe(III) and Mn(IV) reduction. Advances in Microbial Physiology, 49, 219–286.CrossRefGoogle Scholar
  36. Luther, G. W., III, Sundby, B., Lewis, B. L., Brendel, P. J., and Silverberg, N., 1997. Interactions of manganese with the nitrogen cycle. Alternative pathways to dinitrogen. Geochimica et Cosmochimica Acta, 61, 4043–4052.CrossRefGoogle Scholar
  37. Martens, C. S., and Berner, R. A., 1974. Methane production in the interstitial waters of sulfate-depleted sediments. Science, 185, 1167–1169.CrossRefGoogle Scholar
  38. Martens, C. S., and Klump, J. V., 1984. Biogeochemical cycling in an organic-rich coastal marine basin. 4. An organic carbon budget for sediments dominated by sulfate reduction and methanogenesis. Geochimica et Cosmochimica Acta, 48, 1987–2004.CrossRefGoogle Scholar
  39. Mortimer, R. J. G., Davey, J. T., Krom, M. D., Watson, P. G., Frickers, P. E., and Clifton, R. J., 1999. The effect of macrofauna on pore-water profiles and nutrient fluxes in the intertidal zone of the Humber Estuary. Estuarine, Coastal and Shelf Science, 48, 683–699.CrossRefGoogle Scholar
  40. Murray, J. W., and Grundmanis, V., 1980. Oxygen consumption in pelagic marine sediments. Science, 209, 1527–1530.CrossRefGoogle Scholar
  41. Myers, K. H., and Nealson, K. H., 1988. Microbial reduction of manganese oxides: interactions with iron and sulfur. Geochimica et Cosmochimica Acta, 52, 2727–2732.CrossRefGoogle Scholar
  42. Nevin, K. P., and Lovely, D. R., 2002. Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans. Applied and Environmental Microbiology, 68, 2294–2299.CrossRefGoogle Scholar
  43. Over, D. J., 1990. Trace metals in burrow walls and sediments, Georgia Bight, USA. Ichnos, 1, 31–41.CrossRefGoogle Scholar
  44. Thamdrup, B., and Dalsgaard, T., 2002. Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Applied and Environmental Microbiology, 68, 1312–1318.CrossRefGoogle Scholar
  45. Van Cappellen, P., and Gaillard, J. F., 1996. Biogeochemical dynamics in aquatic sediments. In Lichtner, P. C., Steefel, C. I.,and Oelkers, E. H. (eds.), Reactive Transport in Porous Media. Reviews in Mineralogy. Washington: Mineralogical Society of America, Vol. 34, pp. 335–376.Google Scholar
  46. Westrich, J. T., and Berner, R. A., 1984. The role of sedimentary organic matter in bacterial sulphate reduction: the G model tested. Limnology and Oceanography, 29, 236–249.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Kurt O. Konhauser
    • 1
  • Murray K. Gingras
    • 1
  • Andreas Kappler
    • 2
  1. 1.Department of Earth and Atmospheric SciencesUniversity of AlbertaEdmontonCanada
  2. 2.Geomicrobiology Group Center for Applied GeoscienceUniversity of TübingenTübingenGermany