Skip to main content

Clay Authigenesis, Bacterial

  • Reference work entry
Encyclopedia of Geobiology

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

The formation of clay minerals in situ through the direct or indirect action of bacteria.

Overview

Clays are one of the largest and most diverse assemblage of minerals known. The vast majority of clay minerals are aluminum silicate in composition, with various other cations substituted into the crystal lattice. The replacement of either Si or Al can lead to an excess of negative charge, which is either neutralized by the adsorption of additional cations onto the outer mineral surfaces or within the interlayer spaces.

Within the past 2 decades, field studies have led to the general recognition that bacteria can mediate the formation of clay minerals. Some clays form as replacement products from the alteration of primary minerals. In this regard, the bacterial community growing on the rock surface potentially function initially as the weathering agents (through the production of organic acids or ligands that facilitate mineral dissolution) and later as reactive surfaces for...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Davis, C. C., Chen, H. W., and Edwards, M., 2002. Modelling silica sorption to iron hydroxide. Environmental Science and Technology, 36, 582–587.

    Article  Google Scholar 

  • Doyle, R. J., 1989. How cell walls of gram-positive bacteria interact with metal ions. In: Beveridge, T. J., and Doyle, R. J. (eds.), Metal Ions and Bacteria. New York: Wiley, pp. 275–293.

    Google Scholar 

  • Farmer, V. C., Krishnamurti, G. S. R., and Huang, P. M., 1991. Synthetic allophane and layer-silicate formation in SiO2-Al2O3-FeO-Fe2O3-MgO-H2O systems at 23°C and 89°C in a calcareous environment. Clays and Clay Minerals, 39, 561–570.

    Article  Google Scholar 

  • Ferris, F. G., Fyfe, W. S., and Beveridge, T. J., 1987. Bacteria as nucleation sites for authigenic minerals in a metal-contaminated lake sediment. Chemical Geology, 63, 225–232.

    Article  Google Scholar 

  • Glasauer, S., Langley, S., and Beveridge, T. J., 2001. Sorption of Fe Hydr(oxides) to the surface of Shewanella putrefaciens: cell-bound fine-grained minerals are not always formed de novo. Applied and Environmental Microbiology, 67, 5544–5550.

    Article  Google Scholar 

  • Habte, M., and Barrion, M., 1984. Interaction of Rhizobium sp. with toxin producing fungus in culture medium and in a tropical soil. Applied and Environmental Microbiology, 47, 1080–1083.

    Google Scholar 

  • Heynen, C. E., van Elsas, J. D., Kuikman, P. J., and van Veen, J. A., 1988. Dynamics of Rhizobium leguminosarum biovar trifolii introduced in soil; the effect of bentonite clay on predation by protozoa. Soil Biology and Biochemistry, 20, 483–488.

    Article  Google Scholar 

  • Konhauser, K. O., and Urrutia, M. M., 1999. Bacterial clay authigenesis: a common biogeochemical process. Chemical Geology, 161, 399–413.

    Article  Google Scholar 

  • Konhauser, K. O., Fisher, Q. J., Fyfe, W. S., Longstaffe, F. J., and Powell, M. A., 1998. Authigenic mineralization and detrital clay binding by freshwater biofilms: the Brahmani River, India. Geomicrobiology Journal, 15, 209–222.

    Article  Google Scholar 

  • Konhauser, K. O., Schiffman, P., and Fisher, Q. J., 2002. Microbial mediation of authigenic clays during hydrothermal alteration of Basaltic Tephra, Kilauea Volcano. Geochemistry, Geophysics, and Geosystems, 3(12), 1–13.

    Article  Google Scholar 

  • Leveille, R. J., Longstaffe, F. J., and Fyfe, W. S., 2002. Kerolite in carbonate-rich speleothems and microbial deposits from Basaltic Sea Caves, Kauai, Hawaii. Clays and Clay Minerals, 50, 514–524.

    Article  Google Scholar 

  • Steefel, C. I., and van Cappellen, P., 1990. A new kinetic approach to modeling water–rock interaction: the role of nucleation, precursors, and ostwald ripening. Geochemica et. Cosmochimica Acta, 54, 2657–2677.

    Article  Google Scholar 

  • Stotzky, G., and Rem, L. T., 1966. Influence of clay minerals on microorganisms. 1. Montmorillonite and kaolinite on bacteria. Canadian Journal of Microbiology, 12, 547–563.

    Article  Google Scholar 

  • Taylor, P. D., Jugdaohsingh, R., and Powell, J. J., 1997. Soluble silica and high affinity for aluminium under physiological and natural conditions. Journal of the American Chemical Society, 119, 8852–8856.

    Article  Google Scholar 

  • Tazaki, K., Fyfe, W. S., Iizumi, S., Sampei, Y., Watanabe, H., Goto, M., Miyake, Y., and Noda, S., 1994. Clay aerosols and arctic ice algae. Clays and Clay Minerals, 42, 402–408.

    Article  Google Scholar 

  • Urrutia, M. M., and Beveridge, T. J., 1994. Formation of fine-grained metal and silicate precipitates on a bacterial surface (Bacillus subtilis). Chemical Geology, 116, 261–280.

    Article  Google Scholar 

  • Urrutia, M. M., Kemper, M., Doyle, R., and Beveridge, T. J., 1992. The membrane-induced proton motive force influences the metal binding ability of Bacillus subtilis cell walls. Applied and Environmental Microbiology, 58, 3837–3844.

    Google Scholar 

  • Wada, S. I., and Wada, K., 1980. Formation, composition and structure of hydroxy-aluminosilicate ions. Journal of Soil Science, 31, 457–467.

    Article  Google Scholar 

  • Warren, L. A., and Ferris, F. G., 1998. continuum between sorption and precipitation of Fe(III) on microbial surfaces. Environmental Science and Technology, 32, 2331–2337.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Konhauser, K.O. (2011). Clay Authigenesis, Bacterial. In: Reitner, J., Thiel, V. (eds) Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9212-1_17

Download citation

Publish with us

Policies and ethics