Skip to main content

Bacteria

  • Reference work entry
Encyclopedia of Geobiology

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 764 Accesses

Synonyms

Eubacteria (term abandoned)

Definition

Prokaryotes that constitute, besides Archaea and Eukarya, a domain of life. According to (old Greek) bakterion “small rod.”

History

During the nineteenth century, several fundamental discoveries defined the beginning of modern microbiology (cf. Schlegel, 1999). Louis Pasteur (1822–1895) found that growth of bacteria in nutrient broths is not due to spontaneous generation and that fermentation is caused by the growth of microorganisms. Ferdinand Cohn (1828–1898) could state that bacteria must belong to a phylogenetic group separated from other unicellular plants or animals, due to their size, shape, the mode of cell division, and their metabolic properties. Robert Koch (1842–1910) developed the concept of infectious diseases. The final proof that bacteria must be distinct from plants and animals could be shown not until the distinct compartmentation of bacterial cells was noticed by electron microscopy, in the 1960s. Especially, the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Asao, M., and Madigan, M. T., 2010. Taxonomy, phylogeny and ecology of the heliobacteria. Photosynthesis Research, 104, 103–111.

    Article  Google Scholar 

  • Barton, L., and Fauque, G. D., 2009. Biochemistry, physiology and biotechnology of sulfate-reducing bacteria. Advances in Applied Microbiology, 68, 41–98.

    Article  Google Scholar 

  • Bernadet, J.-F., and Nakagawa, Y., 2006. An introduction to the family Flavobacteriaceae. In Balows, et al. (eds.), The Prokaryotes 7. Heidelberg: Springer, pp. 455–480.

    Chapter  Google Scholar 

  • Campbell, L., and Vaulot, D., 1993. Photosynthetic picoplankton community structure in the subtropical North Pacific Ocean near Hawaii (station ALOHA). Deep-Sea Research Part I: Oceanographic Research Papers, 40, 2043–2060.

    Article  Google Scholar 

  • Charon, N. W., Greenberg, E. P., Koopman, M. B., and Limberger, R. J., 1992. Spirochete chemotaxis, motility, and the structure of the spirochetal periplasmic flagella. Microbiological Research, 143, 597–603.

    Google Scholar 

  • Chistoserdova, L., Kalyuzhnaya, M. G., and Lidstrom, M. E., 2009. The Expanding World of Methylotrophic Metabolism. Annual Review of Microbiology, 63, 477–499.

    Article  Google Scholar 

  • Ciccarelli, F. D., Doerks, T., von Mering, C., Creevey, C. J., Snel, B., and Bork, P., 2006. Toward Automatic Reconstruction of a highly resolved tree of life. Science, 311, 1283–1287.

    Article  Google Scholar 

  • Cole, J. R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R. J., Kulam-Syed-Mohideen, A. S., McGarrell, D. A., Marsh, T., Garrity, G. M., and Tiedje, J. M., 2008. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Research, 37, D141–D145.

    Article  Google Scholar 

  • Crerar, D. A., Knox, G. W., and Means, J. L., 1979. Biogeochemistry of bog iron in the New Jersey Pine Barrens. Chemical Geology, 24, 111–135.

    Article  Google Scholar 

  • Da Costa, M. S., Rainey, F. A., and Nobre, M. F., 2006. The genus Thermus and relatives. In Balows, et al. (eds.), The Prokaryotes 7. Heidelberg: Springer, pp. 797–812.

    Chapter  Google Scholar 

  • Dubilier, N., Bergin, C., and Lott, C., 2008. Symbiotic diversity in marine animals: the art of harnessing chemosymbiosis. Nature Reviews Microbiology, 6, 725–740.

    Article  Google Scholar 

  • Gray, M. W., Burger, G., and Lang, B. F., 1999. Mitochondrial evolution. Science, 283, 1476–1481.

    Article  Google Scholar 

  • Hanada, S., and Pierson, B. K., 2006. The family Chloroflexaceae. In Balows, et al. (eds.), The Prokaryotes 7. Heidelberg: Springer, pp. 815–842.

    Chapter  Google Scholar 

  • Huber, R., and Eder, W., 2006. Aquificales. In Balows, et al. (eds.), The Prokaryotes 7. Heidelberg: Springer, pp. 925–938.

    Chapter  Google Scholar 

  • Kelly, D. P., and Wood, A. P., 2006. The chemolithotrophic Bacteria. In Balows, et al. (eds.), The Prokaryotes 2. Heidelberg: Springer, pp. 441–456.

    Chapter  Google Scholar 

  • Kersters, K., de Vos, P., Gillis, M., Swings, J., Vandamme, P., and Stackebrandt, E., 2006. Introduction to Proteobacteria. In Balows, et al. (eds.), The Prokaryotes 5. Heidelberg: Springer, pp. 3–37.

    Chapter  Google Scholar 

  • Lee, K. C., Webb, R. I., Janssen, P. H., Sangwan, P., Romeo, T., Staley, J. T., and Fuerst, J. A., 2009. Phylum Verrucomicrobia representatives share a compartmentalized cell plan with members of bacterial phylum Planctomycetes. BMC Microbiology, 9, 5.

    Article  Google Scholar 

  • Lonhienne, T. G, Sagulenko, E., Webb, R. I., Lee, K. C., Franke, J., Devos, D. P., Nouwens, A., Carroll, B. J., and Fuerst, J. A., 2010. Endocytosis-like protein uptake in the bacterium Gemmata obscuriglobus. Proceedings of the National Academy of Sciences USA, 107, 12883–12888.

    Article  Google Scholar 

  • Madigan M. T., Dunlap, P. V., and Clark, D. P., 2009. Brock Biology of Microorganisms, 12th edn. San Francisco: Pearson/Benjamin Cummings.

    Google Scholar 

  • Nelson, K. E., Clayton, R.A., Gill, S. R. et al., 1999. Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima. Nature, 399, 323–329.

    Article  Google Scholar 

  • Overmann, J., and Garcia-Pichel, F., 2006. The phototrophic way of life. In Balows, et al. (eds.), The Prokaryotes 1. Heidelberg: Springer, pp. 82–85.

    Google Scholar 

  • Oyaizu, H., Debrunner-Vossbrinck, B., Mandelco, L., Studier, J. A., and Woese, C. R., 1987. The green non-sulfur bacteria: a deep branching in the eubacterial line of descent. Systematic and Applied Microbiology, 9, 47–53.

    Article  Google Scholar 

  • Pace, N. R., 2009. Mapping the tree of life. Microbiology and Molecular Biology Reviews, 73, 565–576.

    Article  Google Scholar 

  • Schlegel, H. G., 1999. Geschichte der Mikrobiologie (Acta Historica Leopoldina 28). Halle (Saale): Deutsche Akademie der Naturforscher Leopoldina.

    Google Scholar 

  • Schlegel, H. G., and Jannasch, H. W., 2006. Prokaryotes and their habitats. In Balows, et al. (eds.), The Prokaryotes 1. Heidelberg: Springer, pp. 137–184.

    Chapter  Google Scholar 

  • Stackebrandt, E., and Schumann, P., 2006. Introduction to the taxonomy of Actinobacteria. In Balows, et al. (eds.), The Prokaryotes 3. Heidelberg: Springer, pp. 297–321.

    Chapter  Google Scholar 

  • Szabó, Z., Stahl, A. O., Albers, S. V., Kissinger, J. C., Driessen, A. J., and Pohlschröder, M., 2007. Identification of diverse archaeal proteins with class III signal peptides cleaved by distinct archaeal prepilin peptidases. J Bacteriol, 189, 772–778.

    Article  Google Scholar 

  • Tucker, J. D., Siebert, C. A., Escalante, M., Adams, P. G., Olsen, J. D., Otto, C., Stokes, D. L., and Hunter, C. N., 2010. Membrane invagination in Rhodobacter sphaeroides is initiated at curved regions of the cytoplasmic membrane, then forms both budded and fully detached spherical vesicles. Molecular Microbiology, 76, 833–847.

    Article  Google Scholar 

  • Waterbury, J. B., 2006. The Cyanobacteria – isolation, purification, and identification. In Balows, et al. (eds.), The Prokaryotes. Heidelberg: Springer, pp. 1053–1073.

    Chapter  Google Scholar 

  • Woese, C. R., and Fox, G. E., 1977. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proceedings of the National Academy of Science USA, 74, 5088–5090.

    Article  Google Scholar 

  • Wu, M., and Eisen, J. A., 2008. A simple, fast, and accurate method of phylogenomic inference. Genome Biology, 9, R151.

    Article  Google Scholar 

  • Zinder, S. H., and Dworkin, M., 2006. Morphological and physiological diversity. In Balows, et al. (eds.), The Prokaryotes 1. Heidelberg: Springer, pp. 185–220.

    Chapter  Google Scholar 

  • Zusman, D. R., Scott, A. E., Yang, Z., and Kirby, J. R., 2007. Chemosensory pathways, motility and development in Myxococcus xanthus. Nature Reviews of Microbiology, 5, 862–872.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Hoppert, M. (2011). Bacteria. In: Reitner, J., Thiel, V. (eds) Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9212-1_16

Download citation

Publish with us

Policies and ethics