Skip to main content

Ores, Microbial Precipitation and Oxidation

  • Reference work entry
Encyclopedia of Geobiology

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 478 Accesses

Synonyms

Gossan; Ore deposits; Oxidation zone; Supergene enrichment

Definition

Ore deposits are natural enrichments of chemical elements of economic interest. While all natural elements are present in certain background concentrations in rocks and minerals, they are typically not economically extractable at these levels. Geological processes may lead to enrichments of elements in such a way that orebodies are formed from which large quantities of elements may be extracted at a much lower cost. The formation of orebodies generally occurs in three steps: (1) element extraction from a large volume of rock or melt; (2) transport of elements; (3) deposition of elements in a volume of rock much smaller than the extracted volume. These steps may occur in magmatic melts, hydrothermal systems, diagenetic environments, and at the Earth’s surface. Melts, solutions, gases, and solid phases (minerals) may be involved in these processes. In many cases, ore forming processes occur in magmatic and...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Anbar, A. D., 2004. Iron stable isotopes: beyond biosignatures. Earth and Planetary Science Letters, 217, 223–236.

    Article  Google Scholar 

  • Bak, F., and Cypionka, H., 1987. A novel type of energy metabolism involving fermentation of inorganic sulphur compounds. Nature, 326, 891–892.

    Article  Google Scholar 

  • Bawden, T. M. et al., 2003. Extreme 34S depletions in ZnS at the Mike gold deposit, Carlin Trend, Nevada: evidence for bacteriogenic supergene sphalerite. Geology, 31(10), 913–916.

    Article  Google Scholar 

  • Bentley, R., and Chasteen, T. G., 2002. Microbial methylation of metalloids: arsenic, antimony, and bismuth. Microbiology and Molecular Biology Reviews, 66(2), 250–271.

    Article  Google Scholar 

  • Beukes, N. J., 2004. Early options in photosynthesis. Nature, 431, 522–523.

    Article  Google Scholar 

  • Burstein, I. B., Shelton, K. L., Gregg, J. M., and Hagni, R. D., 1993. Complex, multiple ore-fluids in the world-class Southeast Missouri Pb-Zn-Cu deposits: sulfur isotope evidence. In Hagni, R. D. (ed.), Geology and Geochemistry of Mississippi Valley-Type Ore Deposits. Rolla: University of Missouri, pp. 1–15.

    Google Scholar 

  • Campbell, W. R., and Barton, P. B., 1996. Occurrence and significance of stalactites within the epithermal deposits at Creede, Colorado. The Canadian Mineralogist, 34, 905–930.

    Google Scholar 

  • Dahanayake, K., and Krumbein, W. E., 1986. Microbial structures in oolithic iron formations. Mineralium Deposita, 21, 85–94.

    Article  Google Scholar 

  • Dahlkamp, F. J., 1993. Uranium Ore Deposits. Berlin: Springer, p. 459.

    Book  Google Scholar 

  • Donnelly, T. H., and Ferguson, J., 1980. A stable isotope study of three deposits in the Alligator Rivers uranium field. In Ferguson, J., and Goleby, A. B. (eds.), Uranium in the Pine Creek Geosyncline. Vienna: International Atomic Energy Agency, pp. 387–406.

    Google Scholar 

  • Enders, M. S., Knickerbocker, C., Titley, S. R., and Southham, G., 2006. The role of bacteria on the supergene environments of the Morenci porphyry copper deposit, Greenlee County, Arizona. Economic Geology, 101, 59–70.

    Article  Google Scholar 

  • Fallick, A. E., Ashton, J. H., Boyce, A. J., Ellam, R. M., and Russell, M. J., 2001. Bacteria were responsible for the magnitude of the world-class hydrothermal base metal sulphide orebody at Navan, Ireland. Economic Geology, 96, 885–890.

    Google Scholar 

  • Glynn, S. et al., 2006. The role of prokaryotes in supergene alteration of submarine hydrothermal sulfides. Earth and Planetary Science Letters, 244, 170–185.

    Article  Google Scholar 

  • Goldhaber, M. B. et al., 1990. Genesis of the tabular-type Vanadium-Uranium Deposits of the Henry Basin, Utah. Part II. Mechanisms of ore and gangue mineral formation at the interface between brine and meteoric water. Economic Geology, 85, 215–269.

    Article  Google Scholar 

  • Goldhaber, M. B., Reynolds, R. L., and Rye, R. O., 1978. Origin of a South Texas roll-type uranium deposit: II. sulfide petrology and sulfur isotope studies. Economic Geology, 73, 1690–1705.

    Article  Google Scholar 

  • Hofmann, B., 1989a. Erzmineralien in palaeozoischen, mesozoischen und tertiären Sedimenten der Nordschweiz und Südwestdeutschlands. Schweizerische Mineralogische und Petrographische Mitteilungen, 69, 345–357.

    Google Scholar 

  • Hofmann, B., 1989b. Genese, Alteration und rezentes Fliess-System der Uranlagerstätte Krunkelbach (Menzenschwand, Südschwarzwald). Baden, Switzerland: Nagra, pp. 88–30.

    Google Scholar 

  • Hofmann, B., and v. Gehlen, K., 1993. Formation of stratiform sulfide mineralizations in the Lower Muschelkalk (Middle Triassic) of Southwestern Germany and Northern Switzerland: constraints from sulfur isotope data. Schweizerische Mineralogische und Petrographische Mitteilungen, 73, 365–374.

    Google Scholar 

  • Hofmann, B. A., 1999. Geochemistry of Natural Redox Fronts – A Review. NTB 99–05, Wettingen, Switzerland: Nagra.

    Google Scholar 

  • Hofmann, B. A., Helfer, M., Diamond, I., Villa, I., and Sharp, Z. D., 1998. Late-Alpine epithermal breccia mineralization at Grimsel, Central Swiss Alps. Terra Nostra, 98(1), 17.

    Google Scholar 

  • Hofmann, B. A., Farmer, J. D., von Blanckenburg, F., and Fallick, A. E., 2008. Subsurface filamentous fabrics: An evaluation of possible modes of origins based on morphological and geochemical criteria, with implications for exoplaeontology. Astrobiology, 8(1), 87–117.

    Article  Google Scholar 

  • Jensen, M. L., 1958. Sulfur isotopes and the origin of sandstone-type uranium deposits. Economic Geology, 53, 598–616.

    Article  Google Scholar 

  • Kappler, A., Pasquero, C., and Konhauser, K. O., 2005. Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria. Geology, 33(11), 865–868.

    Article  Google Scholar 

  • Kashefi, K., and Lovley, D. R., 2000. Reduction of Fe(III), Mn(IV), and toxic metals at 100°C by Pyrobaculum islandicum. Applied and Environmental Microbiology, 66(3), 1050–1056.

    Article  Google Scholar 

  • Kashefi, K., Tor, J. M., Nevin, K. P., and Lovley, D. R., 2001. Reductive precipitation of gold by dissimilatory Fe(III)-reducing bacteria and archaea. Applied and Environmental Microbiology, 67(7), 3275–3279.

    Article  Google Scholar 

  • Kirschvink, J. L. et al., 2000. Paleoproterozoic snowball Earth: Extreme climatic and geochemical global change and its biological consequences. Proceedings of the National Academy of Sciences, 97(4), 1400–1405.

    Article  Google Scholar 

  • Klein, C., 2005. Some Precambrian banded iron-formations (BIFs) around the world: their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin. American Mineralogist, 90, 1473–1499.

    Article  Google Scholar 

  • Konhauser, K. O., 1998. Diversity of bacterial iron mineralization. Earth-Science Reviews, 43, 91–121.

    Article  Google Scholar 

  • Konhauser, K. O. et al., 2002. Could bacteria have formed the Precambrian banded iron formations? Geology, 30, 1079–1082.

    Article  Google Scholar 

  • Kucha, H., Schroll, E., and Stumpfl, E. F., 2005. Fossil sulphate-reducing bacteria in the Bleiberg lead-zinc deposit, Austria. Mineralium Deposita, 40, 123–126.

    Article  Google Scholar 

  • Labrenz, M. et al., 2000. Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science, 290, 1744–1747.

    Article  Google Scholar 

  • Leach, D. L., Viets, J. G., and Gent, C. A., 1996. Sulfur isotope geochemistry of ore and gangue minerals from the Silesia-Cracow Mississippi Valley-type ore district, Poland. Prace Panstwowego Instytutu Geologicznego, 154, 123–137.

    Google Scholar 

  • Lehmann, B. et al., 2007. Highly metalliferous carbonaceous shale and Early Cambrian seawater. Geology, 35(5), 403–406.

    Article  Google Scholar 

  • Lengke, M. F., and Southham, G., 2005. The effect of thiosulfate-oxidizing bacteria on the stability of the gold-thiosulfate complex. Geochimica et Cosmochimica Acta, 69(15), 3759–3772.

    Article  Google Scholar 

  • Leventhal, J. S., 1998. Metal-rich black shales: formation, economic geology and environmental considerations. In Schieber, J., Zimmerle, W., and Sethi, P. (eds.), Shales and Mudstones. Stuttgart: Nägerle u. Obermiller.

    Google Scholar 

  • Machel, H. G., 2001. Bacterial and thermochemical sulfate reduction in diagenetic settings – old and new insights. Sedimentary Geology, 140, 143–175.

    Article  Google Scholar 

  • Macqueen, R. W., and Coope, J. A., 1985. Role of organisms and organic matter in ore deposition. Canadian Journal of Earth Sciences, 22, 1890–1892.

    Article  Google Scholar 

  • Melchiorre, E. B., and Williams, P. A., 2001. Stable isotopic characterization of the thermal profile and subsurface biological activity during oxidation of the Great Australia Deposit, Cloncurry, Queensland, Australia. Economic Geology, 96, 1685–1693.

    Article  Google Scholar 

  • Melchiorre, E. B., Williams, P. A., and Bevins, R. E., 2001. A low temperature oxygen isotope thermometer for cerussite, with applications at Broken Hill, New South Wales, Australia. Geochimica et Cosmochimica Acta, 65(15), 2527–2533.

    Article  Google Scholar 

  • Meunier, J. D., Landais, P., Monthioux, M., and Pagel, M., 1987. Oxidation – reduction processes in the genesis of the uranium – vanadium tabular deposits of the Cottonwood Wash mining area (Utah, USA): evidence from petrological study and organic matter analysis. Bulletin of Minéralogy, 110, 145–156.

    Google Scholar 

  • Mohagheghi, A., 1985. The Role of Aqueous Sulfide and Sulfate-Reducing Bacteria in the Kinetics and Mechanisms of the Reduction of Uranyl Ion. PhD thesis, Colorado School of Mines, Colorado.

    Google Scholar 

  • Mohagheghi, A., Updegraff, D. M., and Goldhaber, M. B., 1985. The role of sulfate-reducing bacteria in the deposition of sedimentary uranium ores. Geomicrobiology Journal, 4(2), 153–173.

    Article  Google Scholar 

  • Moreau, J. W., Webb, R. I., and Banfield, J. F., 2004. Ultrastructure, aggregation state, and crystal growth of biogenic nanocrystalline sphalerite and wurtzite. American Mineralogist, 89, 950–960.

    Google Scholar 

  • Nordstrom, D. K., and Southam, G., 1997. Geomicrobiology of sulfide mineral oxidation. In Nealson, K. H.  (ed.), Geomicrobiology. Reviews in Mineralogy. Washington: Mineralogical Society of America, pp. 361–390.

    Google Scholar 

  • Oremland, R. S. et al., 2005. A microbial arsenic cycle in a salt-saturated extreme environment. Science, 308, 1305–1308.

    Article  Google Scholar 

  • Rackley, R. I., 1972. Environment of Wyoming tertiary uranium deposits. American Association of Petroleum Geologists Bulletin, 56, 755–774.

    Google Scholar 

  • Rainbow, A., Kyser, T. K., and Clark, A. H., 2006. Isotopic evidence for microbial activity during supergene oxidation of a high-sulfidation epithermal Au-Ag deposit. Geology, 34(4), 269–272.

    Article  Google Scholar 

  • Reitner, J., 2004. Fossile tiefe Biosphäre in Klüften des Triberg Granits (Moosengrund, Schwarzwald). In Schmidt, G. (ed.), Geobiologie. 74. Jahrestagung der Paläonto-logischen Gesellschaft, Göttingen, 02. bis 08. Oktober 2004. Kurzfassungen der Vorträge und Poster. Universitätdruckerei Göttingen, Göttingen.

    Google Scholar 

  • Reynolds, R. L., Goldhaber, M. B., and Carpenter, D. J., 1982. Biogenic and nonbiogenic ore-forming processes in the South Texas uranium district: Evidence from the Panna Maria deposit. Economic Geology, 77, 541–556.

    Article  Google Scholar 

  • Saunders, J. A., and Swann, C. T., 1994. Mineralogy and geochemistry of a cap-rock Zn-Pb-Sr-Ba occurrence at the Hazlehurst salt dome, Mississippi. Economic Geology, 89(2), 381–390.

    Article  Google Scholar 

  • Schaefer, M. O., Gutzmer, J., and Beukes, N. J., 2001. Late plaeoproterozoic Mn-rich oncoids: earliest evidence for microbially mediated Mn precipitation. Geology, 29(9), 835–838.

    Article  Google Scholar 

  • Schroll, E., 1996. The Triassic carbonate-hosted Pb-Zn mineralization in the Alps (Europe): the genetic position of Bleiberg Type deposits. In Sangster, D. F. (ed.), Carbonate-Hosted Lead-Zinc Deposits. Michigan: Society of Economic Geologists, Special Publication 4.

    Google Scholar 

  • Sillitoe, R. H., Folk, R. L., and Saric, N., 1996. Bacteria as mediators of copper sulfide enrichment during weathering. Science, 272, 1153–1155.

    Article  Google Scholar 

  • Southam, G., and Saunders, J. A., 2005. The Geomicrobiology of ore deposits. Economic Geology, 100(6), 1067–1084.

    Article  Google Scholar 

  • Stolz, J. S., and Oremland, R. S., 1999. Bacterial respiration of arsenic and selenium. FEMS Microbiology Reviews, 23(5), 615–627.

    Article  Google Scholar 

  • Stribrny, B., and Puchelt, H., 1991. Geochemical and metallogenic aspects of organic carbon-rich pelitic sediments in Germany. In Pagel, M., and Leroy, J. L. (eds.), Source, Transport and Deposition of Metals. Rotterdam: Balkema, pp. 593–598.

    Google Scholar 

  • Suzuki, Y., and Banfield, J. F., 1999. Geomicrobiology of uranium. In Burns, P. C., and Finch, R. (eds.), Uranium: Mineralogy, Geochemistry and the Environment. Washington: Mineralogical Society of America, pp. 393–432.

    Google Scholar 

  • Taylor, B. E., 2004. Biogenic and thermogenic sulfate reduction in the Sullivan Pb-Zn-Ag deposit, British Columbia (Canada): Evidence from micro-isotopic analysis of carbonate and sulfide in bedded ores. Chemical Geology, 204, 215–236.

    Article  Google Scholar 

  • Tebo, B. M., Ghiorse, W. C., van Waasbergen, L. G., Siering, P. L., and Caspi, R., 1997. Bacterially mediated mineral formation: Insights into manganese(II) oxidation from molecular genetic and biochemical studies. In Banfield, J. F., and Nealson, K. H. (eds.), Geomicrobiology: Interactions between microbes and minerals. Reviews in Mineralogy, No. 35. Washington: Mineralogical Society of America.

    Google Scholar 

  • Waber, N., Schorscher, H. D., and Peters, T., 1992. Hydrothermal and supergene uranium mineralization at the Osamu Utsumi mine, Poços de Caldas, Minas gerais, Brazil. Journal of Geochemical Exploration, 45, 53–112.

    Article  Google Scholar 

  • Wanty, R. B., Goldhaber, M. B., and Northrop, H. R., 1990. Geochemistry of vanadium in an epigenetic, sandstone-hosted vanadium-uranium deposit, Henry Basin, Utah. Economic Geology, 85, 270–284.

    Article  Google Scholar 

  • Warren, C. G., 1971. A method for discriminating between biogenic and chemical origins of the ore-stage pyrite in a roll-type uranium deposit. Economic Geology, 66, 919–928.

    Article  Google Scholar 

  • Warren, C. G., 1972. Sulfur isotopes as a clue to the genetic geochemistry of a roll-type uranium deposit. Economic Geology, 67, 759–767.

    Article  Google Scholar 

  • Widdel, F. et al., 1993. Ferrous iron oxidation by anoxygenic phototropic bacteria. Nature, 362, 834–836.

    Article  Google Scholar 

  • Wilkinson, J. J., Eyre, S. L., and Boyce, A. J., 2005. Ore-forming processes in Irish-type carbonate-hosted Zn-Pb deposits: evidence from mineralogy, chemistry, and isotopic composition of sulfides at the Lisheen mine. Economic Geology, 100(1), 63–86.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Hofmann, B.A. (2011). Ores, Microbial Precipitation and Oxidation. In: Reitner, J., Thiel, V. (eds) Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9212-1_158

Download citation

Publish with us

Policies and ethics