Skip to main content

Nanocrystals, Microbially Induced

  • Reference work entry
Encyclopedia of Geobiology

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

Mineral particles less than 0.1 µm are a vital component of geochemical cycling in the Earth surface systems. Particles in this size range are generally termed “nanoparticles”; nanocrystals are nanoparticles that exhibit long-range structural order. Their small size implies that they may be relatively mobile in natural systems, as well as more chemically labile than large crystals. They have recently come to the forefront of material science, with new evidence that the properties of some materials are a strong function of particle size, particularly  at the nanometer scale.

Nanocrystals are characterized by higher surface strain and disorder, higher surface reactivity, and differences in reaction kinetics compared to larger crystals of the same composition. These properties make them important reactive agents in natural systems, especially given that minerals in surface and near-surface environments are typically smaller and more highly disordered than minerals crystallized...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Baesman, S. M., Bullen, T. D., Dewald, J., Zhang, D., Curran, S., Islam, F. S., Beveridge, T. J., and Oremland, R. S., 2007. Formation of tellurium nanocrystals during anaerobic growth of bacteria that use Te oxyanions as respiratory electron acceptors. Applied and Environmental Microbiology, 73, 2135–2143.

    Article  Google Scholar 

  • Bazylinski, D. A., and Frankel, R. B., 2003. Biologically controlled mineralization in prokaryotes. In Dove, P. M., De Yoreo, J. J., and Weiner, S. (eds.), Biomineralization. Reviews in Mineralogy. Washington, DC: Mineralogical Society of America, Vol. 54, pp. 217–247.

    Google Scholar 

  • Beveridge, T. J., 1989. Metal ions and bacteria. In Beveridge, T. J., and Doyle, R. J. (eds.), Metal Ions and Bacteria. New York: Wiley.

    Google Scholar 

  • Boukhalfa, H., Icopini, G. A., Reilly, S. D., and Neu, M. P., 2007. Plutonium (IV) reduction by the metal-reducing bacteria Geobacter metallireducens GS15 and Shewanella oneidensis MR1. Applied and Environmental Microbiology, 73, 5897–5903.

    Article  Google Scholar 

  • Cox, B. L., Popa, R., Bazylinski, D. A., Lanoil, B., Douglas, S., Belz, A., Engler, D. L., and Nealson, K. H., 2002. Organization and elemental analysis of P-, S-, and Fe-rich inclusions in a population of freshwater magnetococci. Geomicrobiology Journal, 19, 387–406.

    Article  Google Scholar 

  • Feldheim, D. L., and Eaton, B. E., 2007. Selection of biomolecules capable of mediating the formation of nanocrystals. ACA Nano, 3, 154–159.

    Article  Google Scholar 

  • Ferris, F. G., Beveridge, T. J., and Fyfe, W. S., 1986. Iron-silica crystallite nucleation by bacteria in a geothermal sediment. Nature, 320, 609–611.

    Article  Google Scholar 

  • Fortin, D., Langley, S., and Glasauer, S., 2008. Biomineralization: from nature to application. In Sigel, A., Sigel, H, and Sigel, R. K. O. (eds.), Metal Ions in Life Sciences. Chichester: Wiley, Vol. 4. pp. 377–411.

    Google Scholar 

  • Frankel, R. B., and Bazylinski, D. A., 2003. Biologically induced mineralization by bacteria. In Dove, P. M., De Yoreo, J. J., and Weiner, S. (eds.), Biomineralization. Reviews in Mineralogy. Washington, DC: Mineralogical Society of America, Vol. 54, pp. 95–114.

    Google Scholar 

  • Gilbert, B., and Banfield, J. F., 2005. Molecular-scale processes involving nanoparticulate minerals in biogeochemical systems. In Banfield, J. F., Cervini-Silva, J., and Nealson, K. M. (eds.), Molecular Geomicrobiology, Reviews in Mineralogy. Washington, DC: Mineralogical Society of America, Vol. 59, pp. 109–155.

    Google Scholar 

  • Glasauer, S., Langley, S., and Beveridge, T. J., 2002. Intracellular Fe minerals in a dissimilatory iron-reducing bacterium. Science, 295, 117–119.

    Article  Google Scholar 

  • Glasauer, S., Langley, S., Boyanov, M., Lai, B., Kemner, K., and Beveridge, T. J., 2007. Mixed-valence cytoplasmic iron granules are linked to anaerobic respiration. Applied and Environmental Microbiology, 73, 993–996.

    Article  Google Scholar 

  • Kappler, A., and Straub, K. L., 2005. Geomicrobiological cycling of iron. In Banfield, J. F., Cervini-Silva, J., and Nealson, K. M. (eds.), Molecular Geomicrobiology, Reviews in Mineralogy. Washington, DC: Mineralogical Society of America, Vol. 59, pp. 85–108.

    Google Scholar 

  • Klaus-Joerger, T., Joerger, R., Olsson, E., and Granqvist, C. G., 2001. Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends in Biotechnology, 19, 15–20.

    Article  Google Scholar 

  • Konhauser, K. O., Jones, B., Phoenix, V. R., Ferris, G., and Renaut, R. W., 2004. The microbial role in hot spring silicification. Ambio, 33, 552–558.

    Google Scholar 

  • Lloyd, J., Chesnes, J., Glasauer, S., Bunker, D., Livens, F. R., and Lovley, D. R., 2002. Reduction of actinides and fission products by Fe(III)-reducing bacteria. Geomicrobiology Journal, 19, 103–120.

    Article  Google Scholar 

  • Lowenstam, H. A., and Weiner, S., 1989. On Biomineralization. New York: Oxford University Press.

    Google Scholar 

  • Moreau, J. W., Weber, P. K., Martin, M. C., Gilbert, B., Hutcheon, I. D., and Banfield, J. F., 2007. Extracellular proteins limit the dispersal of biogenic nanoparticles. Science, 316, 1600–1603.

    Article  Google Scholar 

  • Nealson, K. H., and Stahl, D. H., 1997. Microorganisms and biogeochemical cycles: What can we learn from stratified communities? In Banfield, J. F., and Nealson, K. H. (eds.), Geomicrobiology: Interactions Between Microbes and Minerals, Reviews in Mineralogy. Washington, DC: Mineralogical Society of America, Vol. 35, pp. 225–260.

    Google Scholar 

  • Sobolov, D., and Roden, E., 2002. Evidence for rapid microscale bacterial redox cycling of iron in circumneutral environments. Anton van Leeuw, 181, 587–597.

    Article  Google Scholar 

  • Southam, G., and Beveridge, T. J., 1994. The in vitro formation of placer gold by bacteria. Geochimica et Cosmochimica Acta, 58, 4527–4530.

    Article  Google Scholar 

  • Suzuki, Y., Kelly, S. D., Kemner, K. M., and Banfield, J. F., 2002. Nanometre-size products of uranium bioreduction. Nature, 419, 134.

    Article  Google Scholar 

  • Tebo, B. M., Ghiorse, W. C., van Waasbergen, L. G., Siering, P. L., and Caspi, R., 1997. Bacterially mediated mineral formation: insights into manganese (II) oxidation from molecular genetic and biochemical studies. In Banfield, J. F., and Nealson, K. H. (eds.), Geomicrobiology: Interactions Between Microbes and Minerals, Reviews in Mineralogy. Washington, DC: Mineralogical Society of America, Vol. 35, pp. 225–260.

    Google Scholar 

  • Weiner, S., and Dove, P. M., 2003. An overview of biomineralization processes and the problem of the vital effect. In Dove, P. M., De Yoreo, J. J., and Weiner, S. (eds.), Biomineralization, Reviews in Mineralogy. Washington, DC: Mineralogical Society of America, Vol. 54, pp. 1–29.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Glasauer, S. (2011). Nanocrystals, Microbially Induced. In: Reitner, J., Thiel, V. (eds) Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9212-1_155

Download citation

Publish with us

Policies and ethics