Skip to main content

Scanning Probe Microscopy (Includes Atomic Force Microscopy)

  • Reference work entry
Encyclopedia of Geobiology

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 371 Accesses

Synonyms

Atomic force microscopy; Atomic probe microscopy; Force microscopy; Scanning force microscopy

Definition

Scanning probe microscopy uses a nanoscopic probe that is scanned over a solid surface. The interaction between the probe and the surface may be a mechanical or electromagnetic force. The force signal is enhanced and then composed to a force diagram of the surface. Under ideal conditions, an atomic-scale resolution may be achieved.

Introduction

Since their development during the 1970s and early 1980s, scanning probe microscopes (SPMs) have developed into instruments suitable for the analysis of surface topography (and other surface properties) down to near-atomic resolutions. All instruments belonging to this family contain essential components as depicted in Figure 1. In the scanning process, surface material properties are mapped in all three directions. The essential parts of the system are the sharp scanning probe tip, which moves in the zdirection, a piezoelectric...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Allison, D. P., Hinterdorfer, P., and Han, W., 2002. Biomolecular force measurements and the atomic force microscope. Current Opinion in Biotechnology, 13, 47–51.

    Article  Google Scholar 

  • Arnold, J. W., Boothe, D. H., Suzuki, O., and Bailey, G. W., 2004. Multiple imaging techniques demonstrate the manipulation of surfaces to reduce bacterial contamination and corrosion. Journal of Microscopy, 216, 215–221.

    Article  Google Scholar 

  • Binnig, G., Rohrer, H., Gerber, C., and Weibel, E., 1982. Surface studies by scanning tunneling microscopy. Physical Review Letters, 49, 57–61.

    Article  Google Scholar 

  • de Lange, F., Cambi, A., Huijbens, R., de Bakker, B., Rensen, W., Garcia-Parajo, M., van Hulst, N., and Figdor, C. G., 2001. Cell biology beyond the diffraction limit: near-field scanning optical microscopy. Journal of Cell Science, 114, 4153–4160.

    Google Scholar 

  • de Lozanne, A., 2006. Application of magnetic force microscopy in nanomaterials characterization. Microscopy Research and Technique, 69, 550–562.

    Article  Google Scholar 

  • Dufrene, Y. F., 2008. Towards nanomicrobiology using atomic force microscopy. Nature Reviews Microbiology, 6, 674–680.

    Article  Google Scholar 

  • Edidin, M., 2001. Near-field scanning optical microscopy, a siren call to biology. Traffic, 2, 797–803.

    Article  Google Scholar 

  • Fung, Y. C., 1993. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer.

    Google Scholar 

  • Gheber, L., Hwang, J., and Edidin, M., 1998. Design and optimization of a near-field scanning optical microscope for imaging biological samples in liquid. Applied Optics, 37, 3574–3581.

    Article  Google Scholar 

  • Girard, P., 2001. Electrostatic force microscopy: principles and some applications to semiconductors. Nanotechnology, 12, 485–490.

    Article  Google Scholar 

  • Goldmann, W. H., Galneder, R., Ludwig, M., Xu, W., Adamson, E. D., Wang, N., and Ezzell, R. M., 1998. Differences in elasticity of vinculin-deficient F9 cells measured by magnetometry and atomic force microscopy. Experimental Cell Research, 239, 235–242.

    Article  Google Scholar 

  • Grude, O., Hammiche, A., Pollock, H., Bentley, A. J., Walsh, M., Martin, F. L., and Fullwood, N. J., 2007. Near-field photothermal microspectrometry for adult stem-cell identification and characterization. Journal of Microscopy, 228, 366–372.

    Article  Google Scholar 

  • Guckenberger, R., Kösslinger, C., Gatz, R., Breu, H., Levai, W., and Baumeister, W., 1988. A scanning tunneling microscope (STM) for biological applications. Design and performance. Ultramicroscopy, 25, 795–802.

    Article  Google Scholar 

  • Haupt, B. J., Pelling, A. E., and Horton, M. A., 2006. Integrated confocal and scanning probe microscopy for biomedical research. The Scientific World Journal, 6, 1609–1618.

    Article  Google Scholar 

  • Hildebrand, M., Doktycz, M. J., and Allison, D. P., 2008. Application of AFM in understanding biomineral formation in diatoms. Pflugers Archiv-European Journal of Physiology, 456, 127–137.

    Article  Google Scholar 

  • Krotil, H.-U., Stifter, T., Waschipky, H., Weishaupt, K., Hild, S., and Marti, O., 1999. Pulsed force mode: a new method for the investigation of surface properties. Surface and Interface Analysis, 27, 336–340.

    Article  Google Scholar 

  • Lehenkari, P. P., and Horton, M. A., 1999. Single integrin molecule adhesion forces in intact cells measured by atomic force microscopy. Biochemical and Biophysical Research Communications, 259, 645–650.

    Article  Google Scholar 

  • Lower, S. K., Hochella, M. F., and Beveridge, T. J., 2001. Bacterial recognition of mineral surfaces: nanoscale interactions between Schewanella and α-FeOOH. Science, 292, 1360–1363.

    Article  Google Scholar 

  • Murdfield, T., Fischer, U. C., and Fuchs, H., 1996. Acoustic and dynamic force microscopy with ultrasonic probes. Journal of Vacuum Science and Technology B, 14, 877–881.

    Article  Google Scholar 

  • Overney, R. M., Meyer, E., Frommer, J., Brodbeck, D., Lüthi, R., Howald, L., Güntherodt, H.-J., Fujihira, M., Takano, H., and Gotoh, Y., 1992. Friction measurements on phase-separated thin films with a modified atomic force microscope. Nature, 359, 133–134.

    Article  Google Scholar 

  • Price, D. M., Reading, M., Hammiche, A., and Pollock, H. M., 1999. Micro-thermal analysis: scanning thermal microscopy and localised thermal analysis. International Journal of Pharmaceutics, 192, 85–96.

    Article  Google Scholar 

  • Rotsch, C., Braet, F., Wisse, E., and Radmacher, M., 1997. AFM imaging and elasticity measurements on living rat liver macrophages. Cell Biology International, 21, 685–696.

    Article  Google Scholar 

  • Troyon, M., Wang, Z., Pastre, D., Lei, H. N., and Hazotte, A., 1997. Force modulation microscopy for the study of stiff materials. Nanotechnology, 8, 163–171.

    Article  Google Scholar 

  • Yip, C. M., 2001. Atomic force microscopy of macromolecular interactions. Current Opinion in Structural Biology, 11, 567–572.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Hoppert, M. (2011). Scanning Probe Microscopy (Includes Atomic Force Microscopy). In: Reitner, J., Thiel, V. (eds) Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9212-1_15

Download citation

Publish with us

Policies and ethics