Encyclopedia of Geobiology

2011 Edition
| Editors: Joachim Reitner, Volker Thiel

Scanning Probe Microscopy (Includes Atomic Force Microscopy)

  • Michael Hoppert
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-9212-1_15


Atomic force microscopy; Atomic probe microscopy; Force microscopy; Scanning force microscopy


Scanning probe microscopy uses a nanoscopic probe that is scanned over a solid surface. The interaction between the probe and the surface may be a mechanical or electromagnetic force. The force signal is enhanced and then composed to a force diagram of the surface. Under ideal conditions, an atomic-scale resolution may be achieved.


Since their development during the 1970s and early 1980s, scanning probe microscopes (SPMs) have developed into instruments suitable for the analysis of surface topography (and other surface properties) down to near-atomic resolutions. All instruments belonging to this family contain essential components as depicted in Figure 1. In the scanning process, surface material properties are mapped in all three directions. The essential parts of the system are the sharp scanning probe tip, which moves in the zdirection, a piezoelectric...
This is a preview of subscription content, log in to check access


  1. Allison, D. P., Hinterdorfer, P., and Han, W., 2002. Biomolecular force measurements and the atomic force microscope. Current Opinion in Biotechnology, 13, 47–51.Google Scholar
  2. Arnold, J. W., Boothe, D. H., Suzuki, O., and Bailey, G. W., 2004. Multiple imaging techniques demonstrate the manipulation of surfaces to reduce bacterial contamination and corrosion. Journal of Microscopy, 216, 215–221.Google Scholar
  3. Binnig, G., Rohrer, H., Gerber, C., and Weibel, E., 1982. Surface studies by scanning tunneling microscopy. Physical Review Letters, 49, 57–61.Google Scholar
  4. de Lange, F., Cambi, A., Huijbens, R., de Bakker, B., Rensen, W., Garcia-Parajo, M., van Hulst, N., and Figdor, C. G., 2001. Cell biology beyond the diffraction limit: near-field scanning optical microscopy. Journal of Cell Science, 114, 4153–4160.Google Scholar
  5. de Lozanne, A., 2006. Application of magnetic force microscopy in nanomaterials characterization. Microscopy Research and Technique, 69, 550–562.Google Scholar
  6. Dufrene, Y. F., 2008. Towards nanomicrobiology using atomic force microscopy. Nature Reviews Microbiology, 6, 674–680.Google Scholar
  7. Edidin, M., 2001. Near-field scanning optical microscopy, a siren call to biology. Traffic, 2, 797–803.Google Scholar
  8. Fung, Y. C., 1993. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer.Google Scholar
  9. Gheber, L., Hwang, J., and Edidin, M., 1998. Design and optimization of a near-field scanning optical microscope for imaging biological samples in liquid. Applied Optics, 37, 3574–3581.Google Scholar
  10. Girard, P., 2001. Electrostatic force microscopy: principles and some applications to semiconductors. Nanotechnology, 12, 485–490.Google Scholar
  11. Goldmann, W. H., Galneder, R., Ludwig, M., Xu, W., Adamson, E. D., Wang, N., and Ezzell, R. M., 1998. Differences in elasticity of vinculin-deficient F9 cells measured by magnetometry and atomic force microscopy. Experimental Cell Research, 239, 235–242.Google Scholar
  12. Grude, O., Hammiche, A., Pollock, H., Bentley, A. J., Walsh, M., Martin, F. L., and Fullwood, N. J., 2007. Near-field photothermal microspectrometry for adult stem-cell identification and characterization. Journal of Microscopy, 228, 366–372.Google Scholar
  13. Guckenberger, R., Kösslinger, C., Gatz, R., Breu, H., Levai, W., and Baumeister, W., 1988. A scanning tunneling microscope (STM) for biological applications. Design and performance. Ultramicroscopy, 25, 795–802.Google Scholar
  14. Haupt, B. J., Pelling, A. E., and Horton, M. A., 2006. Integrated confocal and scanning probe microscopy for biomedical research. The Scientific World Journal, 6, 1609–1618.Google Scholar
  15. Hildebrand, M., Doktycz, M. J., and Allison, D. P., 2008. Application of AFM in understanding biomineral formation in diatoms. Pflugers Archiv-European Journal of Physiology, 456, 127–137.Google Scholar
  16. Krotil, H.-U., Stifter, T., Waschipky, H., Weishaupt, K., Hild, S., and Marti, O., 1999. Pulsed force mode: a new method for the investigation of surface properties. Surface and Interface Analysis, 27, 336–340.Google Scholar
  17. Lehenkari, P. P., and Horton, M. A., 1999. Single integrin molecule adhesion forces in intact cells measured by atomic force microscopy. Biochemical and Biophysical Research Communications, 259, 645–650.Google Scholar
  18. Lower, S. K., Hochella, M. F., and Beveridge, T. J., 2001. Bacterial recognition of mineral surfaces: nanoscale interactions between Schewanella and α-FeOOH. Science, 292, 1360–1363.Google Scholar
  19. Murdfield, T., Fischer, U. C., and Fuchs, H., 1996. Acoustic and dynamic force microscopy with ultrasonic probes. Journal of Vacuum Science and Technology B, 14, 877–881.Google Scholar
  20. Overney, R. M., Meyer, E., Frommer, J., Brodbeck, D., Lüthi, R., Howald, L., Güntherodt, H.-J., Fujihira, M., Takano, H., and Gotoh, Y., 1992. Friction measurements on phase-separated thin films with a modified atomic force microscope. Nature, 359, 133–134.Google Scholar
  21. Price, D. M., Reading, M., Hammiche, A., and Pollock, H. M., 1999. Micro-thermal analysis: scanning thermal microscopy and localised thermal analysis. International Journal of Pharmaceutics, 192, 85–96.Google Scholar
  22. Rotsch, C., Braet, F., Wisse, E., and Radmacher, M., 1997. AFM imaging and elasticity measurements on living rat liver macrophages. Cell Biology International, 21, 685–696.Google Scholar
  23. Troyon, M., Wang, Z., Pastre, D., Lei, H. N., and Hazotte, A., 1997. Force modulation microscopy for the study of stiff materials. Nanotechnology, 8, 163–171.Google Scholar
  24. Yip, C. M., 2001. Atomic force microscopy of macromolecular interactions. Current Opinion in Structural Biology, 11, 567–572.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Michael Hoppert
    • 1
  1. 1.Institut für Mikrobiologie und GenetikUniversity of GöttingenGöttingenGermany