Skip to main content

Methane, Origin

  • Reference work entry

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

Methane is a colorless and odorless gas, with the chemical formula CH4. Due to its radiative force, it is a strong greenhouse gas and contributes to the warming of the earth. It is formed in the environment by methanogenesis. The main natural sources are wetlands and termites (30% of total emissions), while anthropogenic sources include rice fields, cattle farming, and energy production (70% of total emissions).

General aspects

Methane is a colorless and odorless gas and the major component (97% vol.) of natural gas. Methane has a boiling point of −161°C at a pressure of one atmosphere. As a gas, it is flammable only over a narrow range of concentrations (5–15%) in air. It is mainly produced by microorganisms (methanogens) under anoxic conditions in a process called methanogenesis. These conditions exist under water-covered soils, such as rice paddies, tundra, swamps, and marshes, but also in freshwater and marine sediments. Other anoxic environments include ruminant...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  • Badr, O., Probert, S. D., and Ocallaghan, P. W., 1992. Sinks for atmospheric methane. Applied Energy, 41(2), 137–147.

    Article  Google Scholar 

  • Bastviken, D., Cole, J., Pace, M., and Tranvik, L., 2004. Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochemical Cycles, 18(4), 1–12.

    Google Scholar 

  • Boetius, A., Ravenschlag, K., Schubert, C. J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jørgensen, B. B., Witte, U., and Pfannkuche, O., 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407, 623–626.

    Article  Google Scholar 

  • Boone, D. R., Whitmann, W. B., and Rouvičre, P., 1993. Diversity and taxonomy of methanogens. In Jerry, J. G. (ed.), Methanogenesis: Ecology, Physiology, Biochemistry and Genetics. New York: Chapman Hall, pp. 35–80.

    Google Scholar 

  • Bréas, O., Guillou, C., Reniero, F., and Wada, E., 2001. Review, the global methane cycle: isotopes and mixing ratios, sources and sinks. Isotopes in Environmental and Health Studies, 37, 257–379.

    Article  Google Scholar 

  • Buffett, B., and Archer, D., 2004. Global inventory of methane clathrate: sensitivity to changes in the deep ocean. Earth and Planetary Science Letters, 227(3–4), 185–199.

    Article  Google Scholar 

  • Cao, M. K., Marshall, S., and Gregson, K., 1996. Global carbon exchange and methane emissions from natural wetlands: application of a process-based model. Journal of Geophysical Research-Atmospheres, 101(D9), 14399–14414.

    Article  Google Scholar 

  • Cicerone, R. J., and Oremland, R. S., 1988. Biogeochemical aspects of atmospheric methane. Global Biogeochemical Cycles, 2(4), 299–327.

    Article  Google Scholar 

  • Denman, K. L. et al., 2007. Couplings between changes in the climate system and biogeochemistry. In Solomon, S. et al. (eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Dickens, G. R., Oneil, J. R., Rea, D. K., and Owen, R. M., 1995. Dissociation of oceanic methane hydrate as a cause of the carbon-isotope excursion at the end of the paleocene. Paleoceanography, 10(6), 965–971.

    Article  Google Scholar 

  • Dimitrov, L., 2002. Contribution to atmospheric methane by natural seepages on the Bulgarian continental shelf. Continental Shelf Research, 22(16), 2429–2442.

    Article  Google Scholar 

  • Dlugokencky, E. J. et al., 2003. Atmospheric methane levels off: temporary pause or a new steady-state? Geophysical Research Letters, 30(19).

    Google Scholar 

  • Etheridge, D. M., Pearman, G. I., and Fraser, P. J., 1992. Changes in tropospheric methane between 1841 and 1978 from a high accumulation-rate Antarctic ice core. Tellus Series B, 44, 282–294.

    Article  Google Scholar 

  • Fung, I. et al., 1991. 3-dimensional model synthesis of the global methane cycle. Journal of Geophysical Research-Atmospheres, 96(D7), 13033–13065.

    Article  Google Scholar 

  • Garcia, J. L., Patel, B. K. C., and Ollivier, B., 2000. Taxonomic phylogenetic and ecological diversity of methanogenic Archaea. Anaerobe, 6(4), 205–226.

    Article  Google Scholar 

  • Hein, R., Crutzen, P. J., and Heimann, M., 1997. An inverse modeling approach to investigate the global atmospheric methane cycle. Global Biogeochemical Cycles, 11(1), 43–76.

    Article  Google Scholar 

  • Holzapfel-Pschorn, A., and Seiler, W., 1986. Methane emission during a cultivation period from an Italian rice paddy. Journal of Geophysical Research-Atmospheres, 91(D11), 1803–1814.

    Google Scholar 

  • Hornafius, J. S., Quigley, D., and Luyendyk, B. P., 1999. The world’s most spectacular marine hydrocarbon seeps (Coal Oil Point, Santa Barbara Channel, California): quantification of emissions. Journal of Geophysical Research-Oceans, 104(C9), 20703–20711.

    Article  Google Scholar 

  • Hovland, M., and Judd, A. G., 1988. Seabed Pockmarks and Seepages: Impact on Geology, Biology and the Marine Environment. London: Graham and Trotman.

    Google Scholar 

  • IPCC, 2001. Climate change 2001: the scientific basis. In Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C.A. (eds.), Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 881 p.

    Google Scholar 

  • Judd, A. G., Hovland, M., Dimitrov, L. I., Garcia Gil, S., and Jukes, V., 2002. The geological methane budget at continental margins and its influence on climate change. Geofluids, 2(2), 109–126.

    Article  Google Scholar 

  • Kalff, J. 2001. Limnology: Inland water ecosystems. Prentice Hall, 592 p.

    Google Scholar 

  • Kelly, C. A. et al., 1997. Increases in fluxes of greenhouse gases and methyl mercury following flooding of an experimental reservoir. Environmental Science & Technology, 31(5), 1334–1344.

    Article  Google Scholar 

  • Khalil, M. A. K., 2000. Atmospheric methane: an introduction. In Khalil, M.A.K. (ed.), Atmospheric Methane. Berlin, Heidelberg: Springer, pp. 1–8.

    Chapter  Google Scholar 

  • Kvenvolden, K. A., and Lorensen, T. D., 2001. The global occurrence of natural gas hydrate. In Paull, C. K., and Dillon, W. D. (eds), Natural Gas Hydrates: Occurrence, Distribution and Detection. Geophysical Monograph. Washington, DC: American Geophysical Union.

    Google Scholar 

  • Kvenvolden, K. A., and Rogers, B. W., 2005. Gaia’s breath - global methane exhalations. Marine and Petroleum Geology, 22(4), 579–590.

    Article  Google Scholar 

  • McGinnis, D. F., Wüest, A., Schubert, C. J., Klauser, L., Lorke, A., and Kipfer, R., 2005. Upward flux of methane in the Black Sea: does it reach the atmosphere? In Lee, J. H. W., and Lam, K. M. (eds.), Environmental Hydraulics and Sustainable Water Management. London: Taylor & Francis Group, pp. 423–429.

    Google Scholar 

  • Matthews, E., and Fung, I., 1987. Methane emission from natural wetlands: global distribution, area, and environmental characteristics of sources. Global Biogeochemical Cycles, 1(1), 61–86.

    Article  Google Scholar 

  • Megonigal, J. P., Hines, M. E., and Visscher, P. T., 2004. Anaerobic metabolism: linkages to trace gases and aerobic processes. In Schlesinger, W. H. (ed.), Biogeochemistry. Oxford: Elsevier-Pergamon, pp. 317–424.

    Google Scholar 

  • Milkov, A. V., 2004. Global estimates of hydrate-bound gas in marine sediments: how much is really out there? Earth-Science Reviews, 66(3–4), 183–97.

    Article  Google Scholar 

  • Peckmann, J., and Thiel, V., 2004. Carbon cycling at ancient methane-seeps. Chemical Geology, 205(3–4), 443–467.

    Article  Google Scholar 

  • Rasmussen, R. A., and Khalil, M. A. K., 1984. Atmospheric methane in the recent and ancient atmospheres: concentrations, trends, and interhemispheric gradient. Journal of Geophysical Research, 89, 11599–11605.

    Article  Google Scholar 

  • Schubert, C. J. et al., 2006. Aerobic and anaerobic methanotrophs in the Black Sea water column. Environmental Microbiology, 8(10), 1844–1856.

    Article  Google Scholar 

  • St. Louis, V. L., Kelly, C. A., Duchemin, E., Rudd, J. W. M., and Rosenberg, D. M., 2000. Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate. Bioscience, 50(9), 766–775.

    Article  Google Scholar 

  • Sloan, E. D., 1998. Clathrate Hydrates of Natural Gas, New York: Marcel Dekker.

    Google Scholar 

  • Stevens, C. M., and Wahlen, M., 2000. The isotopic composition of atmospheric methane and its sources. In Khalil, M. A. K. (ed.), Atmospheric Methane. Berlin, Heidelberg: Springer, pp. 25–41.

    Chapter  Google Scholar 

  • Tyler, S. C. et al, 1988. Measurements and interpretation of δ13C of methane from termites, rice paddies, and wetlands in Kenya. Global Biogeochemical Cycles, 2(4), 341–355.

    Article  Google Scholar 

  • Tyler, S. C., 1991. The global methane budget. In Rogers, J. E., and Whitman, W. B. (eds.), Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes. Washington, DC: American Society for Microbiology, pp. 7–38.

    Google Scholar 

  • Whiticar, M. J., 1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology, 161, 219–314.

    Article  Google Scholar 

  • Whiticar, M. J., Faber, E., and Schoell, M., 1986. Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation - Isotope evidence. Geochimica et Cosmochimica Acta, 50, 693–709.

    Article  Google Scholar 

  • Wuebbles, D. J., and Hayhoe, K., 2002. Atmospheric methane and global change. Earth-Science Reviews, 57(3–4), 177–210.

    Article  Google Scholar 

  • Zinder, S. H., 1993. Physiological ecology of methanogens. In Jerry, J. G., (ed.), Methanogenesis: Ecology, Physiology, Biochemistry and Genetics, New York: Chapman Hall, pp. 128–206.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Schubert, C.J. (2011). Methane, Origin. In: Reitner, J., Thiel, V. (eds) Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9212-1_138

Download citation

Publish with us

Policies and ethics