Encyclopedia of Geobiology

2011 Edition
| Editors: Joachim Reitner, Volker Thiel

Meteoritics

  • Mark A. Sephton
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-9212-1_137

Definition

Meteorites are fragments of extraterrestrial material that fall on the Earth’s surface. Most meteorites are parts of asteroids propelled into Earth-crossing orbits by relatively recent collisions in the asteroid belt, initiated by the gravitational effects of Jupiter’s orbit. Relatively small numbers of meteorites originate from larger objects such as the Moon and Mars. The Earth acquires 102 to 103 t of such material each day, but only 1% or less arrives in pieces large enough for identification and recovery (Dodd, 1981). The surface of the meteorite usually melts and emits a glowing tail and a trail of smoke, but the interior of the meteorite is unaffected by passage through the Earth’s atmosphere and remains at the temperature of interplanetary space.

Collection of meteorites

“Falls” are meteorites that have been observed to fall and were subsequently collected; “finds” are meteorites that were not seen to fall. Before the 1970s, the total number of known meteorites...

Keywords

Sugar Carbide Amide Hydrocarbon Aldehyde 
This is a preview of subscription content, log in to check access

Bibliography

  1. Bailey, J., 2001. Astronomical sources of circularly polarized light and the origin of homochirality. Origins Life Evolution Biosphere, 31, 167–183.CrossRefGoogle Scholar
  2. Bland, P. A., Spurny, P., Towner, M. C., Bevan, A. W., Singleton, A. T., Bottke, W. F., Greenwood, R. C., Chesley, S. R., Shrbeny, L., Borovicka, J., Ceplecha, Z., McClafferty, T. P., Vaughan, D., Benedix, G. K., Deacon, G., Howard, K. T., Franchi, I. A., and Hough, R. M., 2009. An anomalous basaltic meteorite from the innermost main belt. Science, 325, 1525–1527.CrossRefGoogle Scholar
  3. Bonner, W. A., and Rubenstein, E., 1987. Supernovae, neutron-stars and biomolecular chirality. Biosystems, 20, 99–111.CrossRefGoogle Scholar
  4. Chang, S., Mack, R., and Lennon, K., 1978. Carbon chemistry of separated phases of Murchison and Allende meteorites. Lunar and Planetary Science, 9, 157–159.Google Scholar
  5. Claus, G., and Nagy, B., 1961. A microbiological examination of some carbonaceous chondrites. Nature, 192, 594–596.CrossRefGoogle Scholar
  6. Cooper, G. W., and Cronin, J. R., 1995. Linear and cyclic aliphatic carboxamides of the Murchison meteorite – hydrolyzable derivatives of amino-acids and other carboxylic-acids. Geochimica et Cosmochimica Acta, 59, 1003–1015.CrossRefGoogle Scholar
  7. Cooper, G., Kimmich, N., Belisle, W., Sarinana, J., Brabham, K., and Garrel, L., 2001. Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth. Nature 414, 879–883.CrossRefGoogle Scholar
  8. Cooper, G. W., Onwo, W. M., and Cronin, J. R., 1992. Alkyl phosphonic-acids and sulfonic-acids in the Murchison meteorite. Geochimica et Cosmochimica Acta, 56, 4109–4115.CrossRefGoogle Scholar
  9. Cooper, G. W., Thiemens, M. H., Jackson, T. L., and Chang, S., 1997. Sulfur and hydrogen isotope anomalies in meteorite sulfonic acids. Science, 277, 1072–1074.CrossRefGoogle Scholar
  10. Cronin, J. R., Pizzarello, S., and Cruikshank, D. P., 1988. Organic matter in carbonaceous chondrites, planetary satellites, asteroids and comets. In Kerridge, J. F., and Matthews, M. S. (eds.), Meteorites and the Early Solar System. Tucson, AZ: University of Arizona Press, pp. 819–857.Google Scholar
  11. Degens, E. T., and Bajor, M., 1962. Amino acids and sugars in the Bruderheim and Murray meteorite. Naturwissenschaften, 49, 605–606.CrossRefGoogle Scholar
  12. Dodd, R. T., 1981. Meteorites: A Chemical and Petralogical Synthesis. London: Cambridge University Press, p. 386.Google Scholar
  13. Engel, M. H., and Nagy, B., 1982. Distribution and enantiomeric composition of amino-acids in the Murchison meteorite. Nature, 296, 837–840.CrossRefGoogle Scholar
  14. Greenberg, J. M., 1993. Physical and chemical composition of comets – from interstellar space to the Earth. In Greenburg, J. M., and Pirronello, V. (eds.), Chemistry of Life’s Origins. Dordrecht: Kluwer, pp. 195–207.CrossRefGoogle Scholar
  15. Hayatsu, R., Anders, E., Studier, M. H., and Moore, L. P., 1975. Purines and triazines in the Murchison meteorite. Geochimica et Cosmochimica Acta, 39, 471–488.CrossRefGoogle Scholar
  16. Jungclaus, G., Cronin, J. R., Moore, C. B., and Yuen, G. U., 1976a. Aliphatic amines in the Murchison meteorite. Nature, 261, 126–128.CrossRefGoogle Scholar
  17. Jungclaus, G. A., Yuen, G. U., Moore, C. B., and Lawless, J. G., 1976b. Evidence for the presence of low molecular weight alcohols and carbonyl compounds in the Murchison meteorite. Meteoritics, 11, 231–237.CrossRefGoogle Scholar
  18. Kaplan, I. R., Degens, E. T., and Reuter, J. H., 1963. Organic compounds in stony meteorites. Geochimica et Cosmochimica Acta, 27, 805–834.CrossRefGoogle Scholar
  19. Kuan, Y.-J., Charnley, S. B., Huang, H.-C., Tseng, W.-L., and Kisiel, Z., 2003. Interstellar glycine. The Astrophysical Journal, 593, 848–867.CrossRefGoogle Scholar
  20. Kvenvolden, K., Lawless, J., Pering, K., Peterson, E., Flores, J., Ponnamperuma, C., Kaplan, I. R., and Moore, C., 1970. Evidence for extra-terrestrial amino acids and hydrocarbons in the Murchison meteorite. Nature, 228, 928–926.CrossRefGoogle Scholar
  21. Kvenvolden, K. A., Lawless, J. G., and Ponnamperuma, C., 1971. Nonprotein amino acids in the Murchison meteorite. Proceedings of the National Academy of Sciences of the United States of America, 68, 86–490.CrossRefGoogle Scholar
  22. Lawless, J. G., and Yuen, G. U., 1979. Quantification of monocarboxylic acids in the Murchison carbonaceous meteorite. Nature, 282, 396–398.CrossRefGoogle Scholar
  23. Lawless, J. G., Zeitman, B., Pereira, W. E., Summons, R. E., and Duffield, A. M., 1974. Dicarboxylic acids in the Murchison meteorite. Nature, 251, 40–42.CrossRefGoogle Scholar
  24. Martins, Z., Botta, O., Fogel, M. L., Sephton, M. A., Glavin, D. P., Watson, J. S., Dworkin, J. P., Schwartz, A. W., and Ehrenfreund, P., 2008. Extraterrestrial nucleobases in the Murchison meteorite. Earth and Planetary Science Letters, 270, 130–136.CrossRefGoogle Scholar
  25. Meierhenrich, U. J., Munoz Caro, G. M., Bredehoft, J. H., Jessberger, E. K., and Thiemann, W. H. P., 2004. Identification of diamino acids in the Murchison meteorite. Proceedings of the National Academy of Sciences of the United States of America, 101, 9182–9186.CrossRefGoogle Scholar
  26. Mueller, G., 1953. The properties and genesis of the carbonaceous complex within the Cold Bokkeveld meteorite. Geochimica et Cosmochimica Acta, 4, 1–10.CrossRefGoogle Scholar
  27. Nagy, B., Meinschein, W. G., and Hennessy, D. J., 1961. Mass spectroscopic analysis of the Orgueil meteorite; evidence for biogenic hydrocarbons. Annals of the New York Academy of Sciences, 93, 25–35.Google Scholar
  28. Nagy, G., Murphy, T. J., Modzeleski, V. E., Rouser, G. E., Claus, G., Hennesy, D. J., Colombo, U., and Gazzarini, F., 1964. Optical activity in saponified organic matter isolated from the interior of the Orgueil meteorite. Nature, 202, 228–223.CrossRefGoogle Scholar
  29. Oró, J., 1961. Comets and the formation of biochemical compounds on the primitive Earth. Nature, 190, 389–390.CrossRefGoogle Scholar
  30. Oró, J., 1963. Ultraviolet absorbing compounds reported present in the Murray meteorite. Nature, 197, 756–758.CrossRefGoogle Scholar
  31. Oró, J., Nooner, D. W., Zlatkis, A., and Wisktrom, S. A., 1966. Paraffinic hydrocarbons in the Orgueil, Murray, Mokoia and other meteorites. Life Sciences and Space Research, 4, 63–100.Google Scholar
  32. Pearson, V. K., Sephton, M. A., Kearsley, A. T., Bland, P. A., Franchi, I. A., and Gilmour, I., 2002. Clay mineral-organic matter relationships in the early Solar System. Meteoritics and Planetary Science, 37, 1829–1833.CrossRefGoogle Scholar
  33. Peltzer, E. T., and Bada, J., 1978. α-Hydroxycarboxylic acids in the Murchison meteorite. Nature, 272, 443–444.CrossRefGoogle Scholar
  34. Peltzer, E. T., Bada, J. L., Schlesinger, G., and Miller, S. L., 1984. The chemical conditions on the parent body of the Murchison Meteorite; some conclusions based on amino, hydroxy and dicarboxylic acids. Advances in Space Research, 4, 69–74.CrossRefGoogle Scholar
  35. Pendleton, Y. J., and Allamandola, L. J., 2002. The organic refractory material in the diffuse interstellar medium: mid-infrared spectroscopic constraints. Astrophysical Journal Supplement Series, 138, 75–98.CrossRefGoogle Scholar
  36. Pering, K. L., and Ponnamperuma, C., 1971. Aromatic hydrocarbons in the Murchison meteorite. Science, 173, 237–239.CrossRefGoogle Scholar
  37. Pizzarello, S., and Cronin, J. R., 2000. Non-racemic amino acids in the Murray and Murchison meteorites. Geochimica et Cosmochimica Acta, 64, 329–338.CrossRefGoogle Scholar
  38. Pizzarello, S., Feng, X., Epstein, S., and Cronin, J. R., 1994. Isotopic analyses of nitrogenous compounds from the Murchison meteorite – ammonia, amines, amino-acids, and polar hydrocarbons. Geochimica et Cosmochimica Acta, 58, 5579–5587.CrossRefGoogle Scholar
  39. Pizzarello, S., Huang, Y. S., Becker, L., Poreda, R. J., Nieman, R. A., Cooper, G., and Williams, M., 2001. The organic content of the Tagish Lake meteorite. Science, 293, 2236–2239.CrossRefGoogle Scholar
  40. Sephton, M. A., Love, G. D., Watson, J. S., Verchovsky, A. B., Wright, I. P., Snape, C. E., and Gilmour, I., 2004. Hydropyrolysis of insoluble carbonaceous matter in the Murchison meteorite: new insights into its macromolecular structure. Geochimica et Cosmochimica Acta, 68, 1385–1393.CrossRefGoogle Scholar
  41. Sephton, M. A., Pillinger, C. T., and Gilmour, I., 1998. d13C of free and macromolecular aromatic structures in the Murchison meteorite. Geochimica et Cosmochimica Acta, 62, 1821–1828.CrossRefGoogle Scholar
  42. Sephton, M. A., Pillinger, C. T., and Gilmour, I., 2001. Normal alkanes in meteorites: molecular delta C-13 values indicate an origin by terrestrial contamination. Precambrian Research, 106, 47–58.CrossRefGoogle Scholar
  43. Sephton, M. A., Verchovsky, A. B., Bland, P. A., Gilmour, I., Grady, M. M., and Wright, I. P., 2003. Investigating the variations in carbon and nitrogen isotopes in carbonaceous chondrites. Geochimica et Cosmochimica Acta, 67, 2093–2108.CrossRefGoogle Scholar
  44. Shimoyama, A., and Katsumata, H., 2001. Polynuclear aromatic thiophenes in the Murchison carbonaceous chondrite. Chemistry Letters, 3, 202–203.CrossRefGoogle Scholar
  45. Stoks, P. G., and Schwartz, A. W., 1979. Uracil in carbonaceous meteorites. Nature, 282, 709–710.CrossRefGoogle Scholar
  46. Stoks, P. G., and Schwartz, A. W., 1981. Nitrogen-heterocyclic compounds in meteorites – significance and mechanisms of formation. Geochimica et Cosmochimica Acta, 45, 563–569.CrossRefGoogle Scholar
  47. Stoks, P. G., and Schwartz, A. W., 1982. Basic nitrogen-heterocyclic compounds in the Murchison meteorite. Geochimica et Cosmochimica Acta, 46, 309–315.CrossRefGoogle Scholar
  48. Studier, M. H., Hayatsu, R., and Anders, E., 1968. Origin of organic matter in early solar system; I, Hydrocarbons. Geochimica et Cosmochimica Acta, 32, 151–173.CrossRefGoogle Scholar
  49. Watson, J. S., Pearson, V. K., Gilmour, I., and Sephton, M. A., 2003. Sesquiterpenoid derivatives in the Orgueil carbonaceous chondrite. Organic Geochemistry, 34, 37–47.CrossRefGoogle Scholar
  50. Yuen, G., Blair, N., DesMarias, D. J., and Chang, S., 1984. Carbon isotope composition of low molecular weight hydrocarbons and monocarboxylic acids fron the Murchison meteorite. Nature, 307, 252–254.CrossRefGoogle Scholar
  51. Yuen, G. U., and Kvenvolden, K. A., 1973. Monocarboxylic acids in Murray and Murchison carbonaceous meteorites. Nature, 251, 40–42.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Mark A. Sephton
    • 1
  1. 1.Department of Earth Science and EngineeringImperial College LondonLondonUK