Encyclopedia of Geobiology

2011 Edition
| Editors: Joachim Reitner, Volker Thiel

Origins of the Metazoa

  • Daniel J. Jackson
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-9212-1_136




Metazoans – heterotrophic, multicellular organisms that posses eukaryotic cells.

Heterotrophs – organisms that must ingest organic carbon to support growth, unlike plants that are autotrophic and can use light to photosynthesize organic compounds.

Evolutionary concepts

A major event in the time line of Earth’s history was the evolution of multicellular animal life, known scientifically as the Metazoa (Knoll and Carroll, 1999; Knoll et al., 2006; Budd, 2008; Love et al., 2009; Xiao and Laflamme, 2009). Metazoans posses eukaryotic cells which contain a distinct membrane bound nucleus, nuclear material (DNA) packaged into multiple linear chromosomes, membrane bound organelles, and modes of cellular division distinct from that of Bacteria and Archaea (Cooper and Hausman, 2009). Metazoans are primarily set apart from plants (also multicellular eukaryotes) in being heterotrophic, and in lacking a rigid cell wall (Campbell et al., 2008).

While all other forms of...


Body Plan Cambrian Explosion Increase Predation Pressure Animal Body Plan Super Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Arendt, D., 2008. The evolution of cell types in animals: emerging principles from molecular studies. Nature Reviews Genetics, 9, 868–882.CrossRefGoogle Scholar
  2. Bengston, S., and Yue, Z., 1992. Predatorial borings in late Precambrian mineralized exoskeletons. Science, 257, 267–369.Google Scholar
  3. Brennan, S. T., Lowenstein, T. K., and Horita, J., 2004. Seawater chemistry and the advent of biocalcification. Geology, 32, 473–476.CrossRefGoogle Scholar
  4. Bromham, L., 2008. Molecular evolution: rates. In Encyclopedia of Life Sciences. Chichester: Wiley, pp. 1–6.Google Scholar
  5. Budd, G. E., 2008. The earliest fossil record of the animals and its significance. Philosophical Transactions of the Royal Society, 363, 1425–1434.CrossRefGoogle Scholar
  6. Butterfield, N., 2003. Exceptional fossil preservation and the Cambrian explosion. Integrative and Comparative Biology, 43, 166–177.CrossRefGoogle Scholar
  7. Campbell, N. A., Reece, J. B., Urry, L. A., Cain, M. L., Wasserman, S. A., Minorsky, P. V., and Jackson, R. B., 2008. Biology. San Francisco: Benjamin Cummings.Google Scholar
  8. Carroll, S. B., 2001. Chance and necessity: the evolution of morphological complexity and diversity. Nature, 409, 1102–1109.CrossRefGoogle Scholar
  9. Carroll, S. B., 2005. Endless Forms Most Beautiful: The New Science of Evo Devo and the Making of the Animal Kingdom. New York: Norton.Google Scholar
  10. Chapman, J. A., Kirkness, E. F., Simakov, O., Hampson, S. E., Mitros, T., Weinmaier, T., Rattei, T., Balasubramanian, P. G., Borman, J., Busam, D., Disbennett, K., Pfannkoch, C., Sumin, N., Sutton, G. G., Viswanathan, L. D., Walenz, B., Goodstein, D. M., Hellsten, U., Kawashima, T., Prochnik, S. E., Putnam, N., Shu, S., Blumberg, B., Dana, C. E., Gee, L., Kibler, D. F., Law, L., Lindgens, D., Martinez, D. E., Peng, J., Wigge, P. A., Bertulat, B., Guder, C., Nakamura, Y., Ozbek, S., Watanabe, H., Khalturin, K., Hemmrich, G., Franke, A., Augustin, R., Fraune, S., Hayakawa, E., Hayakawa, S., Hirose, M., Hwang, J. S., Ikeo, K., Nishimiya-Fujisawa, C., Ogura, A., Takahashi, T., Steinmetz, P. R., Zhang, X., Aufschnaiter, R., Eder, M., Gorny, A., Salvenmoser, W., Heimberg, A. M., Wheeler, B. M., Peterson, K. J., Böttger, A., Tischler, P., Wolf, A., Gojobori, T., Remington, K. A., Strausberg, R. L., Venter, J. C., Technau, U., Hobmayer, B., Bosch, T. C., Holstein, T. W., Fujisawa, T., Bode, H. R., David, C. N., Rokhsar, D. S., and Steele, R. E., 2010. The dynamic genome of Hydra. Nature, 464, 592–596.CrossRefGoogle Scholar
  11. Collins, A. G., and Valentine, J. W., 2001. Defining phyla: evolutionary pathways to metazoan body plans. Evolution and Development, 3, 432–442.CrossRefGoogle Scholar
  12. Cooper, G. M., and Hausman, R. E., 2009. The Cell: A Molecular Approach. Sunderland: Sinauer.Google Scholar
  13. Darwin, C., 1859. On the Origin of Species. London: John Murray.Google Scholar
  14. Dunn, C. W. D., Hejnol, A., Matus, D. Q., Pang, K., Browne, W. E., Smith, S. A., Seaver, E. C. S., Rouse, G. W., Obst, M., Edgecombe, G. D., Sørensen, M. V., Haddock, S. H., Schmidt-Rhaesa, A., Okusu, A., Kristensen, R. M., Wheeler, W. C., Martindale, M. Q. M., and Giribet, G., 2008. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature, 452, 745–749.CrossRefGoogle Scholar
  15. Felsenstein, J., 2004. Inferring Phylogenies. Sunderland: Sinauer.Google Scholar
  16. Gilbert, S. F., 2006. Developmental Biology. Sunderland: Sinauer.Google Scholar
  17. Gould, S. J., 1989. Wonderful Life: The Burgess Shale and the Nature of History. New York: W.W. Norton.Google Scholar
  18. King, N., Westbrook, M. J., Young, S. L., Kuo, A., Abedin, M., Chapman, J., Fairclough, S., Hellsten, U., Isogai, Y., Letunic, I., Marr, M., Pincus, D., Putnam, N., Rokas, A., Wright, K. J., Zuzow, R., Dirks, W., Good, M., Goodstein, D., Lemons, D., Li, W., Lyons, J. B., Morris, A., Nichols, S., Richter, D. J., Salamov, A., Sequencing, J. G., Bork, P., Lim, W. A., Manning, G., Miller, W. T., Mcginnis, W., Shapiro, H., Tjian, R., Grigoriev, I., and Rokhsar, D., 2008. The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature, 451, 783–788.CrossRefGoogle Scholar
  19. Knoll, A. H., 2003a. Life on a Young Planet: The First Three Billion Years of Evolution on Earth. Princeton: Princeton University Press.Google Scholar
  20. Knoll, A. H. K., 2003b. Biomineralization and evolutionary history. Reviews in Mineralogy and Geochemistry, 54, 229–356.CrossRefGoogle Scholar
  21. Knoll, A. H. K., and Carroll, S. B. C., 1999. Early animal evolution: emerging views from comparative biology and geology. Science, 284, 2129–2137.CrossRefGoogle Scholar
  22. Knoll, A. H. K., Javaux, E. J., Hewitt, D., and Cohen, P., 2006. Eukaryotic organisms in Proterozoic oceans. Philosophical Transactions of the Royal Society, 361, 1023–1038.CrossRefGoogle Scholar
  23. Love, G. D., Grosjean, E., Stalvies, C., Fike, D., Grotzinger, J., Bradley, A., Kelly, A., Bhatia, M., Meredith, W., Snape, C., Bowring, S., Condon, D., and Summons, R. E., 2009. Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature, 457, 718–721.CrossRefGoogle Scholar
  24. Marshall, C. R., 2006. Explaining the Cambrian “Explosion” of animals. Annual Review of Earth and Planetary Sciences, 34, 355–384.CrossRefGoogle Scholar
  25. Martindale, M. Q., Pang, K., Matus, D. Q., and Finnerty, J. R., 2003. Expression of mesodermal genes in the anthozoan Nematostella vectensis. Integrative and Comparative Biology, 43, 942–942.Google Scholar
  26. Matus, D. Q., Pang, K., Marlow, H., Dunn, C. W. D., Thomsen, G. H., and Martindale, M. Q. M. 2006. Molecular evidence for deep evolutionary roots of bilaterality in animal development. Proceedings of the National Academic Sciences USA, 103, 11195–11200.CrossRefGoogle Scholar
  27. Peterson, K. J., Cotton, J. A., Gehling, J. G., and Pisani, D., 2008. The Ediacaran emergence of bilaterians: congruence between the genetic and the geological fossil records. Philosophical Transactions of the Biological Society, 363, 1435–1443.CrossRefGoogle Scholar
  28. Peterson, K. J., Dietrich, M. R., and Mcpeek, M. A., 2009. MicroRNAs and metazoan macroevolution: insights into canalization, complexity, and the Cambrian explosion. Bioessays. BioEssays 31, 736–747.CrossRefGoogle Scholar
  29. Pick, K., Hervé, P., Fabian, S., Erpenbeck, D., Jackson, D. J., Wrede, P., Matthias, W., Alie, A., Burkhard, M., Manuel, M., and Wörheide, G. 2010. Improved phylogenomic taxon sampling noticeably affects non-bilaterian relationships. Molecular Biology and Evolution, doi:10.1093/molbev/msq089.Google Scholar
  30. Putnam, N., Butts, T., Ferrier, D. E., Furlong, R., Hellsten, U., Kawashima, T., Robinson-Rechavi, M., Shoguchi, E., Terry, A., Yu, J., Benito-Gutiérrez, E. L., Dubchak, I., Garcia-Fernàndez, J., Gibson-Brown, J., Grigoriev, I., Horton, A., De Jong, P., Jurka, J., Kapitonov, V., Kohara, Y., Kuroki, Y., Lindquist, E., Lucas, S., Osoegawa, K., Pennacchio, L., Salamov, A., Satou, Y., Sauka-Spengler, T., Schmutz, J., Shin, -I T., Toyoda, A., Bronner-Fraser, M., Fujiyama, A., Holland, L., Holland, P. W., Satoh, N., and Rokhsar, D. S., 2008. The amphioxus genome and the evolution of the chordate karyotype. Nature, 453, 1064–1071.CrossRefGoogle Scholar
  31. Schierwater, B., De Jong, D., and Desalle, R. 2008. Placozoa and the evolution of Metazoa and intrasomatic cell differentiation. The International Journal of Biochemistry & Cell Biology, 41, 370–379.CrossRefGoogle Scholar
  32. Stamatakis, A., Hoover, P., and Rougemont, J. 2008. A rapid bootstrap algorithm for the RAxML Web servers. Systematic Biology, 57, 758–771.CrossRefGoogle Scholar
  33. Venter, J. C., Remington, K., Heidelberg, J. F., Halpern, A. L., Rusch, D., Eisen, J. A., Wu, D., Paulsen, I., Nelson, K. E., Nelson, W., Fouts, D. E., Levy, S., Knap, A. H., Lomas, M. W., Nealson, K., White, O., Peterson, J., Hoffman, J., Parsons, R., Baden-Tillson, H., Pfannkoch, C., Rogers, Y. H., and Smith, H. O. 2004. Environmental genome shotgun sequencing of the Sargasso Sea. Science, 304, 66–74.CrossRefGoogle Scholar
  34. Wang, D. Y., Kumar, S., and Hedges, S. B. 1999. Divergence time estimates for the early history of animal phyla and the origin of plants, animals and fungi. Proceedings of the Royal Society of London B, 266, 163–171.CrossRefGoogle Scholar
  35. Wray, G. A., Levinton, J. S., and Shapiro, L. H. 1996. Molecular evidence for deep Precambrian divergences among metazoan phyla. Science, 274, 568–573.CrossRefGoogle Scholar
  36. Xiao, S., and Laflamme, M., 2009. On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota. Trends in Ecology and Evolution, 24, 31–40.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Daniel J. Jackson
    • 1
  1. 1.Courant Research Centre GeobiologyUniversity of GöttingenGöttingenGermany