Encyclopedia of Geobiology

2011 Edition
| Editors: Joachim Reitner, Volker Thiel

Subsurface Filamentous Fabrics

  • Beda A. Hofmann
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-9212-1_135


Moss agate p.p.; SFF; Stalactitic minerals p.p.


Subsurface filamentous fabrics (SFF, Figures 15) result from the encrustation of microbial filaments with minerals in subsurface geological environments, followed by oxidation of organic matter (Hofmann, 2007; Hofmann and Farmer, 2000; Hofmann et al., 2008). Encrustations of fibrous minerals may yield similar fabrics, but a biogenic origin is indicated by evidence for high flexibility, and a low variability of the smallest diameter of the filamentous forms, typically 1–3 μm. SFF textures vary from delicate mineral webs to massive rocks containing enclosed filaments, depending on the degree of mineral precipitation after initial filament encrustation in voids. SFF are most commonly found in voids in volcanic rocks and in the oxidation zone of ore deposits rich in reduced elements (S, Fe), but also occur in paleokarst environments (Baele, 1998; Feldmann et al., 1997; Kretzschmar, 1982), Mississippi Valley-type base...


Oxidation Zone Mineral Vein Subsurface Environment Filamentous Form Initial Filament 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Baele, J. M., 1998. Reliques silicifiées et minéralisées de paléokarsts post-varisques sur le Dévonien en Belgique méridionale (Entre-Sambre-et-Meuse). Annales de la Société Géologique du Nord, 6(2), 127–133.Google Scholar
  2. Bowerbank, J. S., 1842. On the spongeous origin of moss agates and other siliceous bodies. AMNH, 10, 9–18, 84–91.Google Scholar
  3. Daubenton, L. J. M., 1782. Sur les causes qui produisent trois sortes d’herborisations dans les pierres. Mémoires de l’Académie Royale des Sciences, 667–673.Google Scholar
  4. Feldmann, M., Neher, J., Jung, W., and Graf, F., 1997. Fungal quartz weathering and iron crystallite formation in an Alpine environment, Piz Alv, Switzerland. Eclogae Geologicae Helvetiae, 90, 541–556.Google Scholar
  5. Hill, C., and Forti, P., 1997. Cave Minerals of the World. Huntsville: National Speleological Society.Google Scholar
  6. Hofmann, B., 1989. Genese, Alteration und rezentes Fliess-System der Uranlagerstätte Krunkelbach (Menzenschwand, Südschwarzwald). Nagra Technical Report 88–30, Nagra, Baden.Google Scholar
  7. Hofmann, B. A., 2007. Morphological biosignatures from subsurface environments: recognition on planetary missions. Space Science Reviews, DOI 10.1007/s11214-007-9147-9.Google Scholar
  8. Hofmann, B. A., and Farmer, J. D., 2000. Filamentous fabrics in low-temperature mineral assemblages: are they fossil biomarkers? implications for the search for a subsurface fossil record on the early Earth and Mars. Planetary and Space Science, 48, 1077–1086.CrossRefGoogle Scholar
  9. Hofmann, B. A., Farmer, J. D., von Blanckenburg, F., and Fallick, A. E., 2008. Subsurface filamentous fabrics: an evaluation of possible modes of origins based on morphological and geochemical criteria, with implications for exoplaeontology. Astrobiology, 8, 87–117.CrossRefGoogle Scholar
  10. Kretzschmar, M., 1982. Fossile Pilze in Eisen-Stromatolithen von Warstein (Rheinisches Schiefergebirge). Facies, 7, 237–260.CrossRefGoogle Scholar
  11. Razumovsky, G., 1835. Les agates mousseuses. Bulletin de la société géologique de France, 6, 165–168.Google Scholar
  12. Reitner, J., 2004. Fossile tiefe Biosphäre in Klüften des Triberg Granits (Moosengrund, Schwarzwald). In Schmidt, G. (ed.), Geobiologie. Göttingen: Universitätdruckerei Göttingen.Google Scholar
  13. Trewin, N. H., and Knoll, A. H., 1999. Preservation of Devonian chemotrophic filamentous bacteria in calcite veins. Palaios, 14, 288–294.CrossRefGoogle Scholar
  14. Weitschat, W., 1986. Phosphatisierte Ammonoideen aus der Mittleren Trias von Central-Spitzbergen. Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg, 61, 249–279.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Beda A. Hofmann
    • 1
  1. 1.Earth Science DepartmentNatural History Museum BernBernSwitzerland