Encyclopedia of Geobiology

2011 Edition
| Editors: Joachim Reitner, Volker Thiel

Sulfur Isotopes

  • Michael E. Böttcher
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-9212-1_131


Radioactive sulfur isotopes; Stable sulfur isotopes


Sulfur. A chemical element that is one of the constituents of living organisms and of the Earth.

Isotopes. Isotopes are different nuclear forms of the same element. For a given element, a constant number of protons but different numbers of neutrons in the nucleus correspond to different isotopes. Sulfur of standard atomic mass 32.065 u has 18 isotopes, most of which are not stable and undergo radioactive decay.

Stable sulfur isotopes. Stable isotopes are isotopes that do not decay within an experimentally observable time frame. Stable isotopes have essentially the same chemical characteristics and, therefore, their behavior is chemically almost identical. The different masses lead to isotope fractionation in chemical, physical, and especially biological reactions. Four stable isotopes occur in nature: 32S (95.02%), 33S (0.75%), 34S (4.21%), and 36S (0.02%) (Hoefs, 2008). Typically, the ratio of the two most...


Sulfate Reduction Hydrogen Sulfide Sulfur Isotope Iron Sulfide Sulfur Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Amend, J. P., Edwards, K. J., and Lyons, T. W. (eds.), 2004. Sulfur Biogeochemistry - Past and Present. Boulder: Geological Society of America.Google Scholar
  2. Amrani, A., and Aizenshtat, Z., 2004. Mechanisms of sulfur introduction chemically controlled: δ 34S imprint. Organic Geochemistry, 35, 1319.CrossRefGoogle Scholar
  3. Bolliger, C., Schroth, M. H., Bernasconi, S. M., Kleikemper, J., and Zeyer, J., 2001. Sulfur isotope fractionation during microbial sulfate reduction by toluene-degrading bacteria. Geochimica et Cosmochimica Acta, 65, 3289.CrossRefGoogle Scholar
  4. Böttcher, M. E., and Piel, C., 2008. Kinetic S-34/S-32 fractionation during degassing and hydroxylation of hydrogen sulfide, and protonation of bisulfide. Geophysical Research Abstracts, 10, 232.Google Scholar
  5. Böttcher, M. E., Smock, A., and Cypionka, H., 1998. Sulfur isotope fractionation during experimental precipitation of iron(II) and manganese(II) sulfide at room temperature. Chemical Geology, 146, 127.CrossRefGoogle Scholar
  6. Brunner, B., Bernasconi, S. M., Kleikemper, J., and Schroth, M. H., 2005. A model for oxygen and sulfur isotope fractionation in sulfate during bacterial sulfate reduction processes. Geochimica et Cosmochimica Acta, 69, 4773.CrossRefGoogle Scholar
  7. Canfield, D. E., 2001. Biogeochemistry of sulfur isotopes. In Valley, J. W., and Cole, D. R. (eds.), Reviews in Mineralogy and Geochemistry, The Mineralogical Society of America, 607.Google Scholar
  8. Canfield, D. E., Thamdrup, B., and Fleischer, S., 1998. Isotope fractionation and sulfur metabolism by pure and enrichment cultures of elemental sulfur disproportionating bacteria. Limnology and Oceanography, 43, 253–264.CrossRefGoogle Scholar
  9. Chambers, L. A., and Trudinger, P. A., 1979. Microbiological fractionation of stable sulfur isotopes: a review and critique. Geomicrobiology Journal, 1, 249.CrossRefGoogle Scholar
  10. Clark, I. D., and Fritz, P., 1997. Environmental Isotopes in Hydrogeology. Boca Raton: Lewis.Google Scholar
  11. Cypionka, H., Smock, A. M., and Böttcher, M. E., 1998. A combined pathway of sulfur compound disproportionation in Desulfovibrio desulfuricans. FEMS Microbiology Letters, 166, 181.CrossRefGoogle Scholar
  12. Farquhar, J., Johnston, D. T., Wing, B. A., Habicht, K. S., Canfield, D. E., Airieau, S., and Thiemens, M. H., 2003. Multiple sulphur isotopic interpretations of biosynthetic pathways: implications for biological signatures in the sulphur isotope record. Geobiology, 1, 27.CrossRefGoogle Scholar
  13. Fry, B., 2006. Stable Isotope Ecology. Berlin: Springer.CrossRefGoogle Scholar
  14. Habicht, K. S., Canfield, D. E., and Rethmeier, J., 1998. Sulfur isotope fractionation during bacterial reduction and disproportionation of thiosulfate and sulfite. Geochimica et Cosmochimica Acta, 62, 2585.CrossRefGoogle Scholar
  15. Hoefs, J., 2008. Stable Isotope Geochemistry, 6th edn. Berlin: Springer.Google Scholar
  16. Kallmeyer, J., Ferdelman, T. G., Weber, A., Fossing, H., and Jørgensen, B. B., 2004. A cold chromium distillation procedure for radiolabled sulfide applied to sulfate reduction measurements. Limnology and Oceanography: Methods, 2, 171.CrossRefGoogle Scholar
  17. Kaplan, I. R., and Rittenberg, S. C., 1964. Microbiological fractionation of sulphur isotopes. Journal of General Microbiology, 34, 195.CrossRefGoogle Scholar
  18. Wortmann, U. G., Bernasconi, S. M., and Böttcher, M. E., 2001. Hypersulfidic deep biosphere indicates extreme sulfur isotope fractionation during single-step bacterial sulfate reduction. Geology, 29, 647.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Michael E. Böttcher
    • 1
  1. 1.Geochemistry & Stable Isotope Geochemistry Marine Geology SectionLeibniz Institute for Baltic Sea ResearchWarnemündeGermany