Skip to main content

Isotope Fractionation (Metal)

  • Reference work entry
Encyclopedia of Geobiology

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 538 Accesses

Definition

Variations in the abundances of the isotopes of metals, especially transition metals, arising from physical or chemical processes that discriminate among the isotopes of a given element.

Overview

Research into isotope fractionation of transition metals, alkaline earth metals, and metalloids is advancing rapidly as a result of analytical developments. As of this writing, fractionations have been reported for more than a dozen such elements (Figure 1). These investigations are heavily motivated by geobiological considerations. In particular, there is wide interest in the use of these new isotope systems as biosignatures and as proxies for the biogeochemical cycling of metals in modern and ancient settings. This article briefly reviews the analytical issues in historical context and the state of geobiological applications.

Isotope Fractionation (Metal). Figure 1
figure 1

Observed range of isotopic variations in modern and ancient natural samples for a selection of metals and metalloids....

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Albarède, F., and Beard, B. L., 2004. Analytical methods for non-traditional isotopes. In Johnson, C. M., Beard, B. L., and Albarède, F. (eds.), Geochemistry of  Non-traditional Stable Isotopes. Washington: Mineralogical Society of America and Geochemical Society, pp. 113–152.

    Google Scholar 

  • Altabet, M. A., and Francois, R., 1994. Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization. Global Biogeochemical Cycles, 8, 103–116.

    Article  Google Scholar 

  • Amor, K., Al-Suwaidi, A., Hesselbo, S., Jenkyns, H., and Porcelli, D., 2008. Chromium isotope stratigraphy of the Toarcian OAE from Yorkshire, NE England. Eos Trans AGU, 89, PP31C–1495.

    Google Scholar 

  • Anbar, A. D., 2004. Molybdenum stable isotopes: observations, interpretations and directions. In Johnson, C. M., Beard, B. L., and Albarède, F. (eds.), Geochemistry of Non-traditional Stable Isotopes. Washington: Mineralogical Society of America and Geochemical Society, pp. 429–454.

    Google Scholar 

  • Anbar, A. D., and Rouxel, O., 2007. Metal stable isotopes in paleoceanography. Annual Review of Earth and Planetary Sciences, 35, 717–746.

    Article  Google Scholar 

  • Anbar, A. D., Roe, J. E., Barling, J., and Nealson, K. H., 2000. Nonbiological fractionation of iron isotopes. Science, 288, 126–128.

    Article  Google Scholar 

  • Anbar, A. D., Jazecki, A. A., and Spiro, T. G., 2005. Theoretical investigation of iron isotope fractionation between Fe(H2O)6 3+ and Fe(H2O)6 2+: implications for stable isotope geochemistry. Geochimica et Cosmochimica Acta, 69, 825–837.

    Article  Google Scholar 

  • Archer, C., and Vance, D., 2006. Coupled Fe and S isotope evidence for Archean microbial Fe(III) and sulphate reduction. Geology, 34, 153–156.

    Article  Google Scholar 

  • Archer, C., and Vance, D., 2008. The isotopic signature of the global riverine molybdenum flux and anoxia in the ancient oceans. Nature Geoscience, 1, 597–600.

    Article  Google Scholar 

  • Arnold, G. L., Anbar, A. D., Barber, T., and Lyons, T. W., 2004. Molybdenum isotope evidence for widespread anoxia in mid-Proterozoic oceans. Science, 304, 87–90.

    Article  Google Scholar 

  • Balci, N., Bullen, T. D., Witte-Lien, K., Shanks, W. C., Motelica, M., and Mandernack, K. W., 2006. Iron isotope fractionation during microbially stimulated Fe(II) oxidation and Fe(III) precipitation. Geochimica et Cosmochimica Acta, 70, 622–639.

    Article  Google Scholar 

  • Balistrieri, L. S., Borrok, D. M., Wanty, R. B., and Ridley, W. I., 2008. Fractionation of Cu and Zn isotopes during adsorption onto amorphous Fe(III) oxyhydroxide: experimental mixing of acid rock drainage and ambient river water. Geochimica et Cosmochimica Acta, 72, 311–328.

    Article  Google Scholar 

  • Barling, J., and Anbar, A. D., 2004. Molybdenum isotope fractionation during adsorption by manganese oxides. Earth and Planetary Science Letters, 217, 315–329.

    Article  Google Scholar 

  • Barling, J., Arnold, G. L., and Anbar, A. D., 2001. Natural mass-dependent variations in the isotopic composition of molybdenum. Earth and Planetary Science Letters, 193, 447–457.

    Article  Google Scholar 

  • Beard, B. L., and Johnson, C. M., 2004. Inter-mineral Fe isotope variations in mantle-derived rocks and implications for the Fe geochemical cycle. Geochimica et Cosmochimica Acta, 68, 4727–4743.

    Article  Google Scholar 

  • Beard, B., Johnson, C. M., Cox, L., Sun, H., Nealson, K. H., and Aguilar, C., 1999. Iron isotope biosignatures. Science, 285, 1889–1896.

    Article  Google Scholar 

  • Belshaw, N. S., Zhu, X. K., Guo, Y., and O’Nions, R. K., 2000. High precision measurement of iron isotopes by plasma source mass spectrometry. International Journal for Mass Spectrometry, 197, 191–195.

    Article  Google Scholar 

  • Bergquist, B. A., and Blum, J. D., 2007. Mass-dependent and -independent fractionation of Hg isotopes by photoreduction in aquatic systems. Science, 318, 417–420.

    Article  Google Scholar 

  • Bergquist, B. A., and Boyle, E. A., 2006. Iron isotopes in the Amazon River system: weathering and transport signatures. Earth and Planetary Science Letters, 248, 39.

    Article  Google Scholar 

  • Bermin, J., Vance, D., Archer, C., and Statham, P. J., 2006. The determination of the isotopic composition of Cu and Zn in seawater. Chemical Geology Special Issue in Honour of R. K. O’Nions, 226, 280–297.

    Article  Google Scholar 

  • Bigeleisen, J., 1965. Chemistry of isotopes: isotope chemistry has opened new areas of chemical physics, geochemistry, and molecular biology. Science, 147, 463–471.

    Article  Google Scholar 

  • Borrok, D. M., Nimick, D. A., Wanty, R. B., and Ridley, W. I., 2008. Isotopic variations of dissolved copper and zinc in stream waters affected by historical mining. Geochimica et Cosmochimica Acta, 72, 329–344.

    Article  Google Scholar 

  • Brantley, S. L., Liermann, L., and Bullen, T. D., 2001. Fractionation of Fe isotopes by soil microbes and organic acids. Geology, 29, 535–538.

    Article  Google Scholar 

  • Brantley, S. L., Liermann, L., Guynn, R. L., Anbar, A. D., Icopini, G. A., and Barling, J., 2004. Fe isotopic fractionation during mineral dissolution with and without bacteria. Geochimica et Cosmochimica Acta, 68, 3189–3204.

    Article  Google Scholar 

  • Bullen, T. D., White, A. F., Childs, C. W., Vivit, D. V., and Schulz, M. S., 2001. Demonstration of significant abiotic iron isotope fractionation in nature. Geology, 29, 699–702.

    Article  Google Scholar 

  • Butler, I. B., Archer, C., Vance, D., Olroyd, A., and Rickard, D. T., 2005. Fe isotope fractionation on FeS formation in ambient aqueous solution. Earth and Planetary Science Letters, 236, 430–442.

    Article  Google Scholar 

  • Cameron, V., Vance, D., Archer, C., and House, C. H., 2009. A biomarker based on the stable isotopes of nickel. Proceedings of the National Academy of Sciences, 106, 10944–10948.

    Article  Google Scholar 

  • Canfield, D. E., 2001. Isotope fractionation by natural populations of sulfate-reducing bacteria. Geochimica et Cosmochimica Acta, 65, 1117–1124.

    Article  Google Scholar 

  • Canfield, D. E., and Teske, A., 1996. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature, 382, 127–132.

    Article  Google Scholar 

  • Canfield, D. E., Poulton, S. W., Knoll, A. H., Narbonne, G. M., Ross, G., Goldberg, T., and Strauss, H., 2008. Ferruginous conditions dominated later Neoproterozoic Deep-water chemistry. Science, 321, 949–952.

    Article  Google Scholar 

  • Chang, S., Des Marais, D. J., Mack, R., Miller, S. L., and Strathearn, G. E., 1983. Prebiotic organic synthesis and the origin of life. In Schopf, J. W. (ed.), Earth’s Earliest Biosphere: its Origin and Evolution. Princeton, NJ: Princeton University Press, pp. 53–92.

    Google Scholar 

  • Chen, J., Gaillardet, J. M., and Louvat, P., 2008. Zinc isotopes in the Seine River waters, France: a probe of anthropogenic contamination. Environmental Science and Technology, 42, 6494–6501.

    Article  Google Scholar 

  • Craig, H., 1953a. Corycium defunctum: the non-indicative properties of isotopes and review articles. Econonomic Geology, 48, 600–603.

    Article  Google Scholar 

  • Craig, H., 1953b. The geochemistry of the stable carbon isotopes. Geochimica et Cosmochimica Acta, 3, 53–92.

    Article  Google Scholar 

  • Croal, L. R., Johnson, C. M., Beard, B. L., and Newman, D. K., 2004. Iron isotope fractionation by Fe(II)-oxidizing photoautotrophic bacteria. Geochimica et Cosmochimica Acta, 68, 1227–1242.

    Article  Google Scholar 

  • Crosby, H. A., Johnson, C. M., Roden, E. E., and Beard, B. L., 2005. Fe(II)-Fe(III) electron/atom exchange as a mechanism for Fe isotope fractionation during dissimilatory iron oxide reduction. Environmental Science and Technology, 39, 6698–6704.

    Article  Google Scholar 

  • Crosby, H. A., Roden, E. E., Johnson, C. M., and Beard, B. L., 2007. The mechanisms of iron isotope fractionation produced during dissimilatory Fe(III) reduction by Shewanella putrefaciens and Geobacter sulfurreducens. Geobiology, 5, 169–189.

    Article  Google Scholar 

  • Czaja, A. D., Johnson, C. M., Beard, B. L., Eigenbrode, J. L., Freeman, K. H., and Yamaguchi, K. E., 2010. Iron and carbon isotope evidence for ecosystem and environmental diversity in the ∼2.7 to 2.5 Ga Hamersley Province, Western Australia. Earth and Planetary Science Letters, doi:10.1016/j.epsl.2010.01.032, in press.

    Google Scholar 

  • Dauphas, N., and Rouxel, O. J., 2006. Mass spectrometry and natural variations of iron isotopes. Mass Spectrometry Reviews, 25, 515–550.

    Article  Google Scholar 

  • Dauphas, N., Van Zuilen, M., Wadhwa, M., Davis, A. M., Marty, B., and Janney, P. E., 2004. Clues from Fe isotope variations on the origin of early Archean BIFs from Greenland. Science, 306, 2077–2080.

    Article  Google Scholar 

  • De La Rocha, C. L., 2003. Silicon isotope fractionation by marine sponges and the reconstruction of the silicon isotope composition of ancient deep water. Geology, 31, 423–426.

    Article  Google Scholar 

  • De La Rocha, C. L., and DePaolo, D. J., 2000. Isotopic evidence for variations in the marine calcium cycle over the Cenozoic. Science, 289, 1176–1178.

    Article  Google Scholar 

  • De La Rocha, C. L., Brzezinski, M. A., DeNiro, M. J., and Shemesh, A., 1998. Silicon-isotope composition of diatoms as an indicator of past oceanic change. Nature, 395, 680–683.

    Article  Google Scholar 

  • DePaolo, D. J., 2004. Calcium isotopic variations produced by biological, kinetic, radiogenic and nucleosynthetic processes. In Johnson, C. M.,  Beard, B. L., and Albarède, F. (eds.), Geochemistry of Non-traditional Stable Isotopes. Washington: Mineralogical Society of America and Geochemical Society, pp. 255–288.

    Google Scholar 

  • Dideriksen, K., Baker, J. A., and Stipp, S. L. S., 2008. Equilibrium Fe isotope fractionation between inorganic aqueous Fe(III) and the siderophore complex, Fe(III)-desferrioxamine B. Earth and Planetary Science Letters, 269, 280–290.

    Article  Google Scholar 

  • Domagal-Goldman, S. D., and Kubicki, J. D., 2008. Density functional theory predictions of equilibrium isotope fractionation of iron due to redox changes and organic complexation. Geochimica et Cosmochimica Acta, 72, 5201–5216.

    Article  Google Scholar 

  • Domagal-Goldman, S. D., Paul, K. W., Sparks, D. L., and Kubicki, J. D., 2009. Quantum chemical study of the Fe(III)-desferrioxamine B siderophore complex – electronic structure, vibrational frequencies, and equilibrium Fe-isotope fractionation. Geochimica et Cosmochimica Acta, 73, 1–12.

    Article  Google Scholar 

  • Duan, Y., Severmann, S., Anbar, A. D., Lyons, T. W., Gordon, G. W., and Sageman, B. B., 2010. Isotopic evidence for Fe cycling and repartitioning in ancient oxygen-deficient settings: Examples from black shales of the mid-to-late Devonian Appalachian basin. Earth and Planetary Science Letters, 290, 244–253.

    Article  Google Scholar 

  • Ellis, A. S., Johnson, T. M., and Bullen, T. D., 2002. Chromium isotopes and the fate of hexavalent chromium in the environment. Science, 295, 2060–2062.

    Article  Google Scholar 

  • Fedo, C. M., and Whitehouse, M. J., 2002. Metasomatic origin of quartz-pyroxene rock, Akilia, Greenland, and implications for earth’s earliest life. Science, 296, 1448–1452.

    Article  Google Scholar 

  • Fehr, M. A., Andersson, P. S., Halenius, U., and Morth, C.-M., 2008. Iron isotope variations in Holocene sediments of the Gotland Deep, Baltic Sea. Geochimica et Cosmochimica Acta, 72, 807–826.

    Article  Google Scholar 

  • Foucher, D., and Hintelmann, H., 2006. High-precision measurement of mercury isotope ratios in sediments using cold-vapor generation multi-collector inductively coupled plasma mass spectrometry. Analytical and Bioanalytical Chemistry, 384, 1470–1478.

    Article  Google Scholar 

  • Frei, R., Gaucher, C., Poulton, S. W., and Canfield, D. E., 2009. Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature, 461, 250–253.

    Article  Google Scholar 

  • Gioia, S., Weiss, D., Coles, B., Arnold, T., and Babinski, M., 2008. Accurate and precise zinc isotope ratio measurements in urban aerosols. Analytical Chemistry, 80, 9776–9780.

    Article  Google Scholar 

  • Goldhaber, M. B., and Kaplan, I. R., 1980. Mechanism of sulfur incorporation and isotopic fractionation during early diagenesis in sediments of the Gulf of California. Marine Chemistry, 9, 95–143.

    Article  Google Scholar 

  • Gordon, G. W., Lyons, T. W., Arnold, G. L., Roe, J., Sageman, B. B., and Anbar, A. D., 2009. When do black shales tell molybdenum isotope tales? Geology, 37, 535–538.

    Article  Google Scholar 

  • Halliday, A. N., Lee, D.-C., Christensen, J. N., Walder, A. J., Freedman, P. A., Jones, C. E., Hall, C. M., Yi, W., and Teagle, D., 1995. Recent developments in inductively coupled plasma magnetic sector multiple collector mass spectrometry. International Journal of Mass Spectrometry and Ion Processes, 146–147, 21–33.

    Article  Google Scholar 

  • Harrison, A. G., and Thode, H. G., 1958. Mechanism of bacterial reduction of sulfate from isotope fractionation studies. Transactions of the Faraday Society, 53, 84–92.

    Article  Google Scholar 

  • Helz, G. R., Miller, C. V., Charnock, J. M., Mosselmans, J. F. W., Pattrick, R. A. D., Garner, C. D., and Vaughan, D. J., 1996. Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence. Geochimica et Cosmochimica Acta, 60, 3631–3642.

    Article  Google Scholar 

  • Hill, P. S., and Schauble, E. A., 2008. Modeling the effects of bond environment on equilibrium iron isotope fractionation in ferric aquo-chloro complexes. Geochimica et Cosmochimica Acta, 72, 1939–1958.

    Article  Google Scholar 

  • Hinrichs, K.-U., Hayes, J. M., Bach, W., Spivack, A. J., Hmelo, L. R., Holm, N. G., Johnson, C. G., and Sylva, S. P., 2006. Biological formation of ethane and propane in the deep marine subsurface. Proceedings of the National Academy of Science, 103, 14684–14689.

    Article  Google Scholar 

  • Hönisch, B., and Hemming, N. G., 2005. Surface ocean pH response to variations in pCO2 through two full glacial cycles. Earth and Planetary Science Letters, 236, 305–314.

    Article  Google Scholar 

  • Horita, J., 2005. Some perspectives on isotope biosignatures for early life. Chemical Geology, 218, 171–186.

    Article  Google Scholar 

  • Horita, J., and Berndt, M. E., 1999. Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Science, 285, 1055–1057.

    Article  Google Scholar 

  • Houk, R. S., and Thompson, J. J., 1988. Inductively coupled plasma mass spectrometry. Mass Spectrometry Reviews, 7, 425–461.

    Article  Google Scholar 

  • Icopini, G. A., Anbar, A. D., Ruebush, S. S., Tien, M., and Brantley, S. L., 2004. Iron isotope fractionation during microbial reduction of iron: the importance of adsorption. Geology, 32, 205–208.

    Article  Google Scholar 

  • Jang, J.-H., Mathur, R., Liermann, L. J., Ruebush, S., and Brantley, S. L., 2008. An iron isotope signature related to electron transfer between aqueous ferrous iron and goethite. Chemical Geology, 250, 40–48.

    Article  Google Scholar 

  • Jenkyns, H. C., Matthews, A., Tsikos, H., and Erel, Y., 2007. Nitrate reduction, sulfate reduction, and sedimentary iron isotope evolution during the Cenomanian-Turonian oceanic anoxic event. Paleoceanography, 22, PA3208, doi:10.1029/2006PA001355.

    Article  Google Scholar 

  • John, S. G., 2007. The Marine Biogeochemistry of Zinc Isotopes. PhD, MA, Institute of Technology/Woods Hole Oceanographic Institution.

    Google Scholar 

  • John, S. G., Rouxel, O. J., Craddock, P. R., Engwall, A. M., and Boyle, E. A., 2008. Zinc stable isotopes in seafloor hydrothermal vent fluids and chimneys. Earth and Planetary Science Letters, 269, 17–28.

    Article  Google Scholar 

  • Johnson, T. M., and Bullen, T. D., 2004. Mass-dependent fractionation of selenium and chromium isotopes in low-temperature environments. In Johnson, C. M., Beard, B. L., and Albarède, F. (eds.), Geochemistry of Non-traditional Stable Isotopes. Washington: Mineralogical Society of America and Geochemical Society, pp. 289–317.

    Google Scholar 

  • Johnson, C. M., Skulan, J. L., Beard, B. L., Sun, H., Nealson, K. H., and Bratermann, P. S., 2002. Isotopic fractionation between Fe(III) and Fe(II) in aqueous solutions. Earth and Planetary Science Letters, 195, 141–153.

    Article  Google Scholar 

  • Johnson, C. M., Beard, B. L., and Albarède, F., 2004a. Geochemistry of Non-traditional Stable Isotopes. Washington: Mineralogical Society of America and Geochemical Society, 454 p.

    Google Scholar 

  • Johnson, C. M., Beard, B. L., Roden, E. E., Newman, D. K., and Nealson, K. H., 2004b. Isotopic constraints on biogeochemical cycling of Fe. In Johnson, C. M., Beard, B. L., and Albarède, F. (eds.), Geochemistry of Non-traditional Stable Isotopes. Washington: Mineralogical Society of America and Geochemical Society, pp. 359–408.

    Google Scholar 

  • Johnson, C. M., Beard, B. L., and Roden, E. E., 2008a. The iron isotope fingerprints of redox and biogeochemical cycling in modern and ancient earth. Annual Review of Earth and Planetary Sciences, 36, 457–493.

    Article  Google Scholar 

  • Johnson, C. M., Beard, B. L., Klein, C., Beukes, N. J., and Roden, E. E., 2008b. Iron isotopes constrain biologic and abiologic processes in banded iron formation genesis. Geochimica et Cosmochimica Acta, 72, 151–169.

    Article  Google Scholar 

  • Kaplan, I. R., and Rittenberg, S. C., 1964. Microbiological fractionation of sulphur isotopes. Journal of General Microbiology, 34, 195–212.

    Article  Google Scholar 

  • Kappler, A., Pasquero, C., Konhauser, K. O., and Newman, D. K., 2005. Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria. Geology, 33, 865–868.

    Article  Google Scholar 

  • Konhauser, K. O., Newman, D. K., and Kappler, A., 2005. The potential significance of microbial Fe(III) reduction during deposition of Precambrian banded iron formations. Geobiology, 3, 167–177.

    Article  Google Scholar 

  • Kritee, K., Blum, J. D., Johnson, M. W., Bergquist, B. A., and Barkay, T., 2007. Mercury stable isotope fractionation during reduction of Hg(II) to Hg(0) by mercury resistant microorganisms. Environmental Science and Technology, 41, 1889–1895.

    Article  Google Scholar 

  • Lacan, F., Francois, R., Ji, Y., and Sherrell, R. M., 2006. Cadmium isotopic composition in the ocean. Geochimica et Cosmochimica Acta, 70, 5104.

    Article  Google Scholar 

  • Lacan, F., Radic, A., Jeandel, C., Poitrasson, F., Sarthou, G., Pradoux, C., and Freydier, R., 2008. Measurement of the isotopic composition of dissolved iron in the open ocean. Geophysical Research Letters, 35, L24610-1–L24610-5.

    Article  Google Scholar 

  • Larson, P. B., Maher, K., Ramos, F. C., Chang, Z., Gaspar, M., and Meinert, L. D., 2003. Copper isotope ratios in magmatic and hydrothermal ore-forming environments. Chemical Geology, 201, 337–350.

    Article  Google Scholar 

  • Machel, H. G., Krouse, H. R., and Sassen, R., 1995. Products and distinguishing criteria of bacterial and thermochemical sulfate reduction. Applied Geochemistry, 10, 373–389.

    Article  Google Scholar 

  • Malinovsky, D., Baxter, D. C., and Rodushkin, I., 2007. Ion-specific isotopic fractionation of molybdenum during diffusion in aqueous solutions. Environmental Science and Technology, 41, 1596–1600.

    Article  Google Scholar 

  • Maréchal, C. N., Télouk, P., and Albarède, F., 1999. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectromety. Chemical Geology, 156, 251–273.

    Article  Google Scholar 

  • Mason, T. F. D., Weiss, D. J., Chapman, J. B., Wilkinson, J. J., Tessalina, S. G., Spiro, B., Horstwood, M. S. A., Spratt, J., and Coles, B. J., 2005. Zn and Cu isotopic variability in the Alexandrinka volcanic-hosted massive sulphide (VHMS) ore deposit, Urals, Russia. Chemical Geology, 221, 170–187.

    Article  Google Scholar 

  • Mathur, R., Ruiz, J., Titley, S., Liermann, L., Buss, H., and Brantley, S., 2005. Cu isotopic fractionation in the supergene environment with and without bacteria. Geochimica et Cosmochimica Acta, 69, 5233–5246.

    Article  Google Scholar 

  • Matthews, A., Morhans-Bell, H. S., Emmanuel, S., Jenkyns, H., Erel, Y., and Halciz, L., 2004. Controls of iron-isotope fractionation in organic-rich sediments (Kimmeridge Clay, Upper Jurassic, southern England). Geochimica et Cosmochimica Acta, 68, 3107–3123.

    Article  Google Scholar 

  • McCollom, T. M., and Seewald, J. S., 2006. Carbon isotope composition of organic compounds produced by abiotic synthesis under hydrothermal conditions. Earth and Planetary Science Letters, 243, 74–84.

    Article  Google Scholar 

  • McManus, J., Nägler, T. F., Siebert, C., Wheat, C. G., and Hammond, D. E., 2002. Oceanic molybdenum isotope fractionation: diagenesis and hydrothermal ridge-flank alteration. Geochemistry Geophysics Geosystems, 3, 1078, doi:10.1029/2002GC000356.

    Article  Google Scholar 

  • Miller, C. A., Peuker-Ehrenbrink, B., and Ball, L., 2008. Rhenium isotopes in natural systems. Geochimica et Cosmochimica Acta, 72, A628.

    Google Scholar 

  • Mojzsis, S. J., Arrhenius, G., McKeegan, K. D., Harrison, T. M., Nutman, A. P., and Friend, C. R. L., 1996. Evidence for life on Earth before 3,800 million years ago. Nature, 384, 55–59.

    Article  Google Scholar 

  • Nägler, T. F., Eisenhauer, A., Müller, A., Hemleben, C., and Kramers, J., 2000. The δ44Ca-temperature calibration on fossil and cultured Globigerinoides sacculifer: new tool for reconstruction of past sea surface temperatures. Geochemistry Geophysics Geosystems, 1, 1052, doi:10.1029/2000GC000091.

    Google Scholar 

  • Neubert, N., Nägler, T. F., and Böttcher, M. E., 2008. Solidity controls molybdenum isotope fractionation into exotic sediments: evidence from the modern Black Sea. Geology, 36, 775–778.

    Article  Google Scholar 

  • Nielsen, S. G., Rehkämper, M., Teagle, D. A. H., Butterfield, D. A., Alt, J. C., and Halliday, A. N., 2006. Hydrothermal fluid fluxes calculated from the isotopic mass balance of thallium in the ocean crust. Earth and Planetary Science Letters, 251, 120–133.

    Article  Google Scholar 

  • Ohmoto, H., and Rye, R. O., 1979. Isotopes of sulfur and carbon. In Barnes, H. L. (ed.), Geochemistry of Hydrothermal Ore Deposits. New York: Wiley, pp. 509–567.

    Google Scholar 

  • Pagani, M., Lemarchand, D., Spivack, A., and Gaillardet, J., 2005. A critical evaluation of the boron isotope-pH proxy: the accuracy of ancient ocean pH estimates. Geochimica et Cosmochimica Acta, 69, 953–961.

    Article  Google Scholar 

  • Pavlov, A. A., Kasting, J. F., Eigenbrode, J. L., and Freeman, K. H., 2001. Organic haze in Earth’s early atmosphere: source of low-13C late Archean Kerogens? Geology, 29, 1003–1006.

    Article  Google Scholar 

  • Pearce, C. R., Cohen, A. S., Coe, A. L., and Burton, K. W., 2008. Molybdenum isotope evidence for global ocean anoxia coupled with perturbations to the carbon cycle during the Early Jurassic. Geology, 36, 231–234.

    Article  Google Scholar 

  • Pearson, P. N., and Palmer, M. R., 1999. Middle Eocene seawater pH and atmospheric carbon dioxide concentrations. Science, 284, 1824–1826.

    Article  Google Scholar 

  • Pearson, P. N., and Palmer, M. R., 2000. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature, 406, 695–699.

    Article  Google Scholar 

  • Poitrasson, F., 2006. On the iron isotope homogeneity level of the continental crust. Chemical Geology, 235, 195–200.

    Article  Google Scholar 

  • Pokrovsky, O. S., Viers, J., and Freydier, R., 2005. Zinc stable isotope fractionation during its adsorption on oxides and hydroxides. Journal of Colloid and Interface Science, 291, 192–200.

    Article  Google Scholar 

  • Poulson, R. L., McManus, J., Siebert, C., and Berelson, W. M., 2006. Authigenic molybdenum isotope signatures in marine sediments. Geology, 34, 617–620.

    Article  Google Scholar 

  • Rankama, K., 1948. New evidence of the origin of Pre-cambrian carbon. Bulletin of the Geological Society of America, 59, 389–416.

    Article  Google Scholar 

  • Rankama, K., 1950. Corycium resuscitatum: a discussion. Journal of Geology, 58, 75–79.

    Article  Google Scholar 

  • Rehkämper, M., Frank, M., Hein, J. R., Porcelli, D., Halliday, A., Ingri, J., and Liebetrau, V., 2002. Thallium isotope variations in seawater and hydrogenetic, diagenetic, and hydrothermal ferromanganese deposits. Earth and Planetary Science Letters, 197, 65–81.

    Article  Google Scholar 

  • Rehkämper, M., Frank, M., Hein, J. R., and Halliday, A., 2004. Cenozoic marine geochemistry of thallium deduced from isotopic studies of ferromanganese crusts and pelagic sediments. Earth and Planetary Science Letters, 219, 77–91.

    Article  Google Scholar 

  • Reynolds, B. C., Frank, M., and Halliday, A. N., 2006. Silicon isotope fractionation during nutrient utilization in the North Pacific. Earth and Planetary Science Letters, 244, 431–443.

    Article  Google Scholar 

  • Ripperger, S., and Rehkämper, M., 2007. Precise determination of cadmium isotope fractionation in seawater by double spike MC-ICPMS. Geochimica et Cosmochimica Acta, 71, 631–642.

    Article  Google Scholar 

  • Robert, F., and Chaussidon, M., 2006. A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts. Nature, 443, 969–972.

    Article  Google Scholar 

  • Rodushkin, I., Stenberg, A., Andren, H., Malinovsky, D., and Baxter, D. C., 2004. Isotopic fractionation during diffusion of transition metal ions in solution. Analytical Chemistry, 76, 2148–2151.

    Article  Google Scholar 

  • Rosing, M. T., 1999. 13C-Depleted carbon microparticles in ≥3700-Ma sea-floor sedimentary rocks from West Greenland. Science, 283, 674–676.

    Article  Google Scholar 

  • Rouxel, O., Ludden, J., and Fouquet, Y., 2003. Antimony isotope variations in natural systems and implications for their use as geochemical tracers. Chemical Geology, 200, 25–40.

    Article  Google Scholar 

  • Rouxel, O., Bekker, A., and Edwards, K. J., 2005. Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state. Science, 307, 1088–1091.

    Article  Google Scholar 

  • Rouxel, O., Galy, A., and Elderfield, H., 2006a. Germanium isotopic variations in igneous rocks and marine sediments. Geochimica et Cosmochimica Acta, 70, 3387.

    Article  Google Scholar 

  • Rouxel, O. J., Bekker, A., and Edwards, K. J., 2006b. Response to comment on “iron isotope constraints on the Archean and Paleoproterozoic ocean redox state”. Science, 311, 177.

    Article  Google Scholar 

  • Russell, W. A., Papanastassiou, D. A., and Tombrello, T. A., 1978. Ca isotope fractionation on the earth and other solar system materials. Geochimica et Cosmochimica Acta, 42, 1075–1090.

    Article  Google Scholar 

  • Schauble, E. A., 2007. Role of nuclear volume in driving equilibrium stable isotope fractionation of mercury, thallium, and other very heavy elements. Geochimica et Cosmochimica Acta, 71, 2170–2189.

    Article  Google Scholar 

  • Schauble, E. A., Rossman, G. R., and Taylor, H. P., 2001. Theoretical estimates of equilibrium Fe-isotope fractionations from vibrational spectroscopy. Geochimica et Cosmochimica Acta, 65, 2487–2497.

    Article  Google Scholar 

  • Schidlowski, M., 1988. A 3,800-million-year isotopic record of life from carbon in sedimentary rocks. Nature, 333, 313–318.

    Article  Google Scholar 

  • Schidlowski, M., 2001. Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept. Precambrian Research, 106, 117–134.

    Article  Google Scholar 

  • Schmitt, A.-D., Galer, S. J. G., and Abouchami, W., 2009. Mass-dependent cadmium isotopic variations in nature with emphasis on the marine environment. Earth and Planetary Science Letters, 277, 262–272.

    Article  Google Scholar 

  • Schoenberg, R., Zink, S., Staubwasser, M., and von Blanckenburg, F., 2008. The stable Cr isotope inventory of solid earth reservoirs determined by double spike MC-ICP-MS. Chemical Geology, 249, 294–306.

    Article  Google Scholar 

  • Severmann, S., Johnson, C. M., Beard, B. L., and McManus, J., 2006. The effect of early diagenesis on the Fe isotope compositions of porewaters and authigenic minerals in continental margin sediments. Geochimica et Cosmochimica Acta, 70, 2006–2022.

    Article  Google Scholar 

  • Severmann, S., Lyons, T. W., Anbar, A., McManus, J., and Gordon, G., 2008. Modern iron isotope perspective on Fe shuttling in the Archean and the redox evolution of ancient oceans. Geology, 36, 487–490.

    Article  Google Scholar 

  • Shanks, W. C. III., 2001. Stable isotopes in Seafloor Hydrothermal Systems: vent fluids, hydrothermal deposits, hydrothermal alteration, and microbial processes. Reviews in Mineralogy and Geochemistry, 43, 469–525.

    Article  Google Scholar 

  • Shen, Y., and Buick, R., 2004. The antiquity of microbial sulfate reduction. Earth Science Reviews, 64, 243–272.

    Article  Google Scholar 

  • Shields, W. R., Goldich, S. S., Garner, E. L., and Murphy, T. J., 1965. Natural variations in the abundance ratio and the atomic weight of copper. Journal of Geophysical Research, 70, 479–491.

    Article  Google Scholar 

  • Siebert, C., Nägler, T. F., von Blanckenburg, F., and Kramers, J. D., 2003. Molybdenum isotope records as a potential new proxy for paleoceanography. Earth and Planetary Science Letters, 211, 159–171.

    Article  Google Scholar 

  • Siebert, C., Kramers, J. D., Meisel, T., Morel, P., and Nägler, T. F., 2005. PGE, Re-Os, and Mo isotope systematics in Archean and early Proterozoic sedimentary systems as proxies for redox conditions of the early Earth. Geochimica et Cosmochimica Acta, 69, 1787–1801.

    Article  Google Scholar 

  • Siebert, C., Ross, A., and McManus, J., 2006a. Germanium isotope measurements of high-temperature geothermal fluids using double-spike hydride generation MC-ICP-MS. Geochimica et Cosmochimica Acta, 70, 3986–3995.

    Article  Google Scholar 

  • Siebert, C., McManus, J., Bice, A., Poulson, R., and Berelson, W. M., 2006b. Molybdenum isotope signatures in continental margin marine sediments. Earth and Planetary Science Letters, 241, 723–733.

    Article  Google Scholar 

  • Sikora, E. R., Johnson, T. M., and Bullen, T. D., 2008. Microbial mass-dependent fractionation of chromium isotopes. Geochimica et Cosmochimica Acta, 72, 3631–3641.

    Article  Google Scholar 

  • Skulan, J., DePaolo, D. J., and Owens, T. L., 1997. Biological control of calcium isotopic abundances in the global calcium cycle. Geochimica et Cosmochimica Acta, 61, 2505–2510.

    Article  Google Scholar 

  • Skulan, J. L., Beard, B. L., and Johnson, C. M., 2002. Kinetic and equilibrium isotope fractionation between aqueous Fe(III) and hematite. Geochimica et Cosmochimica Acta, 66, 2995–3015.

    Article  Google Scholar 

  • Smith, C. N., Kesler, S. E., Blum, J. D., and Rytuba, J. J., 2008. Isotope geochemistry of mercury in source rocks, mineral deposits and spring deposits of the California Coast Ranges, USA. Earth and Planetary Science Letters, 269, 399–407.

    Article  Google Scholar 

  • Stirling, C. H., Andersen, M. B., Potter, E.-K., and Halliday, A. N., 2007. Low-temperature isotopic fractionation of uranium. Earth and Planetary Science Letters, 264, 208–225.

    Article  Google Scholar 

  • Teng, F.-Z., Dauphas, N., and Helz, R. T., 2008. Iron isotope fractionation during magmatic differentiation in Kilauea Iki lava lake. Science, 320, 1620–1622.

    Article  Google Scholar 

  • Tipper, E. T., Galy, A., Gaillardet, J., Bickle, M. J., Elderfield, H., and Carder, E. A., 2006. The magnesium isotope budget of the modern ocean: constraints from riverine magnesium isotope ratios. Earth and Planetary Science Letters, 250, 241.

    Article  Google Scholar 

  • Tossell, J. A., 2005. Calculating the partitioning of the isotopes of Mo between oxidic and sulfidic species in aqueous solution. Geochimica et Cosmochimica Acta, 69, 2981–2993.

    Article  Google Scholar 

  • Turner, P. J., Mills, D. J., Schroder, E., Lapitajs, G., Jung, G., Lacone, L. A., Haydar, D. A., and Montaser, A., 1998. Instrumentation for low- and high-resolution ICPMS. In Montaser, A. (ed.), Inductively Coupled Plasma Mass Spectrometry. New York, NY: Wiley-VCH Verlag, pp. 421–501.

    Google Scholar 

  • Urey, H. C., 1947. The thermodynamic properties of isotopic substances. Journal of the Chemical Society, 1947, 562–581.

    Article  Google Scholar 

  • Valley, G. E., and Anderson, H. H., 1947. A comparison of the abundance ratios of the isotopes of terrestrial and of meteoritic iron. Journal of the American Chemical Society, 69, 1871–1873.

    Article  Google Scholar 

  • Vance, D., Archer, C., Bermin, J., Perkins, J., Statham, P. J., Lohan, M. C., Ellwood, M. J., and Mills, R. A., 2008. The copper isotope geochemistry of rivers and the oceans. Earth and Planetary Science Letters, 274, 204–213.

    Article  Google Scholar 

  • van Zuilen, M. A., Lepland, A., and Arrhenius, G., 2002. Reassessing the evidence for the earliest traces of life. Nature, 418, 627–630.

    Article  Google Scholar 

  • Varela, D. E., Pride, C. J., and Brzezinski, M. A., 2004. Biological fractionation of silicon isotopes in Southern Ocean surface waters. Global Biogeochemical Cycles, 18, GB1047, doi:10.1029/2003GB002140.

    Google Scholar 

  • Wada, E., and Hattori, A., 1976a. Natural abundance of 15N in particulate organic matter in the North Pacific Ocean. Geochimica et Cosmochimica Acta, 40, 249–251.

    Article  Google Scholar 

  • Wada, E., and Hattori, A., 1976b. Hattori, natural abundance of δ15N in particulate organic matter in the North Pacific Ocean. Geomicrobiology Journal, 1, 85–101.

    Article  Google Scholar 

  • Walder, A. J., and Freedman, P. A., 1992. Isotopic ratio measurement using a double focusing magnetic sector mass analyser with an inductively coupled plasma as an ion source. Journal of Analytical Atomic Spectrometry, 7, 571–575.

    Article  Google Scholar 

  • Walker, J. C. G., 1987. Was the Archaean biosphere upside down? Nature, 329, 710–712.

    Article  Google Scholar 

  • Wasserburg, G. J., Jacousen, S. B., DePaolo, D. J., McCulloch, M. T., and Wen, T., 1981. Precise determination of ratios, Sm and Nd isotopic abundances in standard solutions. Geochimica et Cosmochimica Acta, 45, 2311–2323.

    Article  Google Scholar 

  • Wasylenki, L. E., Lund, T. J., and Anbar, A. D., 2008a. Mo isotopes fractionate during adsorption to hydrous ferric oxide: implications for Mo isotopes in Archean and Proterozoic oceans. Astrobiology, 6(325), 8–26-O.

    Google Scholar 

  • Wasylenki, L. E., Weeks, C. L., Spiro, T. G., Barga, J. R., and Anbar, A. D., 2008b. How does metal adsorption cause isotopes to apportion? Geochimica et Cosmochimica Acta, 72, A1007.

    Article  Google Scholar 

  • Wasylenki, L. E., Rolfe, B. A., Weeks, C. L., Spiro, T. G., and Anbar, A. D., 2008c. Experimental investigation of the effects of temperature and ionic strength on Mo isotope fractionation during adsorption to manganese oxides. Geochimica et Cosmochimica Acta, 72, 5997–6005.

    Article  Google Scholar 

  • Wasylenki, L. E., Anbar, A. D., Liermann, L. J., Mathur, R., Gordon, G. W., and Brantley, S. L., 2007. Isotope fractionation during microbial metal uptake measured by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 22, 905–910.

    Article  Google Scholar 

  • Weber, T., Frei, R., and Rosing, M., 2008. Assessing mass-dependent isotope fractionation of cerium. Eos Trans AGU, 89, PP31C–1514.

    Google Scholar 

  • Weeks, C. L., Anbar, A. D., Wasylenki, L. E., and Spiro, T. G., 2007. Density functional theory analysis of molybdenum isotope fractionation†. The Journal of Physical Chemistry A, 111, 12434–12438.

    Article  Google Scholar 

  • Weiss, D. J., Rehkdmper, M., Schoenberg, R., McLaughlin, M., Kirby, J., Campbell, P. G. C., Arnold, T., Chapman, J., Peel, K., and Gioia, A. S., 2008. Application of nontraditional stable-isotope systems to the study of sources and fate of metals in the environment. Environmental Science and Technology, 42, 655–664.

    Article  Google Scholar 

  • Welch, S. A., Beard, B. L., Johnson, C. M., and Bratermann, P. S., 2003. Kinetic and equilibrium Fe isotope fractionation between aqueous Fe(II) and Fe(III). Geochimica et Cosmochimica Acta, 67, 4231–4250.

    Article  Google Scholar 

  • Weyer, S., and Schwieters, J. B., 2003. High precision Fe isotope measurements with high mass resolution MC-ICPMS. International Journal for Mass Spectrometry, 226, 355–368.

    Article  Google Scholar 

  • Weyer, S., Anbar, A. D., Brey, G. P., Munker, C., Mezger, K., and Woodland, A. B., 2007. Fe-isotope fractionation during partial melting on Earth and the current view on the Fe-isotope budgets of the planets (reply to the comment of F. Poitrasson and to the comment of B. L. Beard and C. M. Johnson on “Iron isotope fractionation during planetary differentiation” by S. Weyer, A.D. Anbar, G. P. Brey, C. Munker, K. Mezger and A. B. Woodland). Earth and Planetary Science Letters, 256, 638–646.

    Article  Google Scholar 

  • Weyer, S., Anbar, A. D., Gerdes, A., Gordon, G. W., Algeo, T. J., and Boyle, E. A., 2008. Natural fractionation of 238U/235U. Geochimica et Cosmochimica Acta, 72, 345–359.

    Article  Google Scholar 

  • Wiederhold, J. G., Kraemer, S. M., Teutsch, N., Borer, P. M., Halliday, A. N., and Kretzschmar, R., 2006. Iron isotope fractionation during proton-promoted, ligand-controlled, and reductive dissolution of goethite. Environmental Science and Technology, 40, 3787–3793.

    Article  Google Scholar 

  • Wiesli, R. A., Beard, B. L., and Johnson, C. M., 2004. Experimental determination of Fe isotope fractionation between aqueous Fe(II), Siderite, and “Green Rust” in abiotic systems. Chemical Geology, 211, 343–362.

    Article  Google Scholar 

  • Wille, M., Kramers, J. D., Nägler, T. F., Beukes, N. J., Schroder, S., Meisel, T., Lacassie, J. P., and Voegelin, A. R., 2007. Evidence for a gradual rise of oxygen between 2.6 and 2.5 Ga from Mo isotopes and Re-PGE signatures in shales. Geochimica et Cosmochimica Acta, 71, 2417–2435.

    Article  Google Scholar 

  • Wille, M., Nägler, T. F., Lehmann, B., Schroder, S., and Kramers, J. D., 2008. Hydrogen sulphide release to surface waters at the Precambrian/Cambrian boundary. Nature, 453(7196), 767–769.

    Article  Google Scholar 

  • Williams, H. M., McCammon, C. A., Peslier, A. H., Halliday, A. N., Teutsch, N., Levasseur, S., and Burg, J.-P., 2005. Iron isotope fractionation and the oxygen fugacity of the mantle. Science, 304, 1656–1659.

    Article  Google Scholar 

  • Wombacher, F., Rehkämper, M., Mezger, K., and Münker C., 2003. Stable isotope compositions of cadmium in geological materials and meteorites determined by multiple-collector ICPMS. Geochimica et Cosmochimica Acta, 67, 4639–4654.

    Article  Google Scholar 

  • Yamaguchi, K. E., and Ohmoto, H., 2006. Comment on “iron isotope constraints on the archean and paleoproterozoic ocean redox state”. Science, 311, 177a.

    Article  Google Scholar 

  • Yamaguchi, K. E., Johnson, C. M., Beard, B. L., and Ohmoto, H., 2005. Biogeochemical cycling of iron in the Archean-Paleoproterozoic Earth: constraints from iron isotope variations in sedimentary rocks from the Kaapvaal and Pilbara Cratons. Chemical Geology, 218, 135–169.

    Article  Google Scholar 

  • Young, E. D., and Galy, A., 2004. The isotope geochemistry and cosmochemistry of magnesium. In Johnson, C. M., Beard, B. L., and Albarède, F. (eds.), Geochemistry of Non-traditional Stable Isotopes. Washington: Mineralogical Society of America and Geochemical Society, pp. 197–230.

    Google Scholar 

  • Zhu, X. K., O’Nions, R. K., Guo, Y., and Reynolds, B. C., 2000. Secular variations of iron isotopes in North Atlantic Deep Water. Science, 287, 2000–2002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Anbar, A.D., Severmann, S. (2011). Isotope Fractionation (Metal). In: Reitner, J., Thiel, V. (eds) Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9212-1_121

Download citation

Publish with us

Policies and ethics