Skip to main content

Archaea

  • Reference work entry

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Synonyms

Archaebacteria (term abandoned)

Definition

The Archaea are single-celled or filamentous prokaryotes that constitute the third phylogenetic domain of life, besides the Bacteria and the Eukarya. The word “Archaea” (singular archaeum, archaeon) is derived from the Greek word for “the old ones”.

History

The discovery of the Archaea dates back to 1976 when Carl Woese, at his laboratory at Illinois University, compared prokaryotic small subunit ribosomal RNA sequences using oligonucleotide catalogs (Woese, 2007). Woese recognized Methanobacterium thermoautotrophicum as the first member of a fundamentally distinct group of prokaryotes that clustered away from all other bacteria. Consequently, Woese and Fox (1977) established the concept of two separate prokaryotic “urkingdoms ,” Eubacteria and Archaebacteria. Later, the term “Archaebacteria” was changed to “Archaea” to emphasize the fundamental differences between both groups. Based on these discoveries, Woese and...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  • Barns, S. M., Delwiche, C. F., Palmer, J. D., and Pace, N. R., 1996. Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proceedings of the National Academy of Sciences of the United States of America, 93, 9188–9193.

    Article  Google Scholar 

  • Barns, S. M., and Nierzwicki-Bauer, S. A., 1997. Microbial diversity in ocean, surface and subsurface environments. In Banfield, J. F., and Nealson, K. H. (eds.), Geomicrobiology: Interactions between Microbes and Minerals. Reviews in Mineralogy and Geochemistry. Washington, DC: Mineralogical Society of America and Geochemical Society, Vol. 35, pp. 35–79.

    Google Scholar 

  • Battistuzzi, F. U., Feijao, A., and Hedges, S. B., 2004. A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evolutionary Biology, 4, 44–58.

    Article  Google Scholar 

  • Berg, I. A., Kockelkorn, D., Ramos-Vera, W. H., Say, R. F., Zarzycki, J., Hügler, M., Alber, B. E., and Fuchs, G., 2010. Autotrophic carbon fixation in Archaea. Nature Reviews Microbiology, 8, 447–460.

    Article  Google Scholar 

  • Boetius, A., Ravenschlag, K., Schubert, C. J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jørgensen, B. B., Witte, U., and Pfannkuche, O., 2000. A marine consortium apparently mediating anaerobic oxidation of methane. Nature, 407, 623–626.

    Article  Google Scholar 

  • Bond, D. R., and Lovley, D. R., 2002. Reduction of Fe(III) oxide by methanogens in the presence and absence of extracellular quinines. Environmental Microbiology, 4(2), 115–124.

    Article  Google Scholar 

  • Cabello, P., Roldán, M. D., and Moreno-Vivián, C., 2004. Nitrate reduction and the nitrogen cycle in archaea. Microbiology, 150, 3527–3546.

    Article  Google Scholar 

  • DeRosa, M., and Gambacorta, A., 1988. The lipids of Archaebacteria. Progress in Lipid Research, 27, 153–175.

    Article  Google Scholar 

  • Eckburg, P. B., Bik, E. M., Bernstein, C. N., et al., 2005. Diversity of the human intestinal microbial flora. Science, 308, 1635–1638.

    Article  Google Scholar 

  • Giovannoni, S., and Rappé, M., 2000. Evolution, diversity and molecular ecology of marine prokaryotes. In Kirchman, D. L. (ed.), Microbial Ecology of the Oceans. New York: Wiley, pp. 47–84.

    Google Scholar 

  • Graham, D. E., Overbeek, R., Olsen, G. J., and Woese, C. R., 2000. An archaeal genomic signature. Proceedings of the National Academy of Sciences of the United States of America, 97, 3304–3308.

    Article  Google Scholar 

  • Gribaldo, S., and Brochier-Armanet, C., 2006. The origin and evolution of Archaea: a state of the art. Philosophical Transactions of the Royal Society B, 361, 1007–1022.

    Article  Google Scholar 

  • Hallbeck, L., and Pedersen, K., 2008. Characterization of microbial processes in deep aquifers of the Fennoscandian Shield. Applied Geochemistry, 23, 1796–1819.

    Article  Google Scholar 

  • Hinrichs, K. U., Hayes, J. M., Sylva, S. P., Brewer, P. G., and DeLong, E. F., 1999. Methane-consuming archaebacteria in marine sediments. Nature, 398, 802–805.

    Article  Google Scholar 

  • Hoehler, T. M., Alperin, M. J., Albert, D. B., and Martens, C. S., 1994. Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium. Global Biogeochemical Cycles, 8, 451–463.

    Article  Google Scholar 

  • Hopmans, E. C., Schouten, S., Pancost, R. D., van der Meer, M. T. J., and Sinninghe Damsté, J. S., 2000. Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 14, 585–589.

    Article  Google Scholar 

  • Huber, H., and Rachel, R., 2007. Nanoarchaeota. In Garrett, R., and Klenk, H.-P. (eds.), Archaea: Evolution, Physiology and Molecular Biology. Oxford: Blackwell, pp. 51–59.

    Google Scholar 

  • Huber, R., Stoffers, P., Cheminee, J. L., Richnow, H. H., and Stetter, K. O., 1990. Hyperthermophilic archaebacteria within the crater and open-sea plume of erupting Macdonald Seamount. Nature, 345, 179–181.

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC), Fourth Assessment Report 2007 (AR4); Working Group I Report “The physical science basis”, Ch. 2.

    Google Scholar 

  • Kandler, O., and König, H., 1998. Cell wall polymers in Archaea (Archaebacteria). Cellular and Molecular Life Sciences, 54, 305–308.

    Article  Google Scholar 

  • Kashefi, K., Tor, J. M., Holmes, D. E., Gaw Van Praagh, C. V., Reysenbach, A. L., and Lovley, D. R., 2002. Geoglobus ahangari gen. nov., sp. nov., a novel hyperthermophilic archaeon capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe(III) serving as the sole electron acceptor. International Journal of Systematic and Evolutionary Microbiology, 52, 719–728.

    Article  Google Scholar 

  • Kenward, P. A., Goldstein, R. G., Gonzalez, L. A., and Roberts, J. A., 2009. Precipitation of low-temperature dolomite from an anaerobic microbial consortium: the role of methanogenic Archaea. Geobiology, 7, 556–565.

    Article  Google Scholar 

  • Knittel, K., and Boetius, A., 2009. Anaerobic oxidation of methane: progress with an unknown process. Annual Review of Microbiology, 63, 311–334.

    Article  Google Scholar 

  • Koga, Y., Nishihara, M., Morii, H., and Akagawa-Matsushita, M., 1993. Ether polar lipids of methanogenic bacteria: structures, comparative aspects, and biosyntheses. Microbiological Reviews, 57, 164–182.

    Google Scholar 

  • Kuypers, M. M. M., Blokker, P., Erbacher, J., Kinkel, H., Pancost, R. D., Schouten, S., and Sinninghe Damsté, J. S., 2001. Massive expansion of marine archaea during a mid-creatceous oceanic anoxic event. Science, 293, 92–94.

    Article  Google Scholar 

  • Lipp, J. S., Morono, Y., Inagaki, F., and Hinrichs, K. U., 2008. Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature, 454, 991–994.

    Article  Google Scholar 

  • Madigan, M. T., and Martinko, J. M., 2006. Brock Biology of Microorganisms, 11th edn. Englewood Cliffs NJ: Prentice Hall.

    Google Scholar 

  • Margot, H., Acebal, C., Toril, E., Amils, R., and Fernandez Puentes, J. L., 2002. Consistent association of crenarchaeal Archaea with sponges of the genus Axinella. Marine Biology, 140, 739–745.

    Article  Google Scholar 

  • Mascarelli, A. L., 2009. A sleeping giant? Nature Reports, Climate Change, 3, 46–49.

    Google Scholar 

  • Moore, T. S., Murray, R. W., Kurtz, A. C., and Schrag, D. P., 2004. Anaerobic methane oxidation and the formation of dolomite. Earth and Planetary Science Letters, 229, 141–154.

    Article  Google Scholar 

  • Nicol, G. W., and Schleper, C., 2006. Ammonia-oxidising Crenarchaeota: important players in the nitrogen cycle? Trends in Microbiology, 14, 207–212.

    Article  Google Scholar 

  • Peckmann, J., and Thiel, V., 2004. Carbon cycling at ancient methane-seeps. Chemical Geology, 205, 443–467.

    Article  Google Scholar 

  • Pedersen, K., 1997. Microbial life in deep granitic rock. FEMS (Federation of European Microbiological Societies) Microbiology Reviews, 20, 399–414.

    Article  Google Scholar 

  • Raghoebarsing, A. A., Pol, A., van de Pas-Schoonen, K. T., Smolders, A. J., Ettwig, K. F., Rijpstra, W. I., Schouten, S., Damsté, J. S., Op den Camp, H. J., Jetten, M. S., and Strous, M., 2006. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature, 440, 878–879.

    Article  Google Scholar 

  • Reitner, J., Peckmann, J., Reimer, A., Schumann, G., and Thiel, V., 2005. Methane-derived carbonate build-ups and associated microbial communities at cold seeps on the lower Crimean shelf (Black Sea). Facies, 51, 66–79.

    Article  Google Scholar 

  • Roberts, J. A., Bennett, P. C., Gonzalez, L. A., Macpherson, G. L., and Milliken, K. L., 2004. Microbial precipitation of dolomite in methanogenic groundwater. Geology, 32, 277–280.

    Article  Google Scholar 

  • Schleper, C., 2007. Diversity of uncultivated Archaea: perspectives from microbial ecology and metagenomics. In Garrett, R., and Klenk, H.-P. (eds.), Archaea: Evolution, Physiology and Molecular Biology. Oxford: Blackwell, pp. 39–53.

    Google Scholar 

  • Stams, A. J. M., and Plugge, C. M., 2009. Electron transfer in syntrophic communities of anaerobic bacteria and Archaea. Nature Reviews Microbiology, 7, 568–577.

    Article  Google Scholar 

  • Takai, K., and Horikoshi, K., 1999. Genetic diversity of archaea in deep-sea hydrothermal vent environments. Genetics, 152, 1285–1297.

    Google Scholar 

  • Takai, K., Nakamura, K., Toki, T., Tsunogai, U., Miyazaki, M., Miyazaki, J., Hirayama, H., Nakagawa, S., Nunoura, T., and Horikoshi, K., 2008. Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proceedings of the National Academy of Sciences of the United States of America, 105, 10949–10954.

    Article  Google Scholar 

  • Terzi, C., Aharon, P., Ricci Lucchi, F., and Vai, G. B., 1994. Petrography and stable isotope aspects of cold-vent activity imprinted on Miocene-age “calcari a Lucina” from Tuscan and Romagna Apennines, Italy. Geo-Marine Letters, 14, 177–184.

    Article  Google Scholar 

  • van Hoek, A. H. A. M., van Alen, T. A., Sprakel, V. S. I., Leunissen, J. A. M., Brigge, T., Vogels, G. D., and Hackstein, J. H. P., 2000. Multiple acquisition of methanogenic archaeal symbionts by anaerobic ciliates. Molecular Biology and Evolution, 17, 251–258.

    Article  Google Scholar 

  • Woese, C. R., 2007. The birth of the Archaea: a personal retrospective. In Garrett, R., and Klenk, H.-P. (eds.), Archaea: Evolution, Physiology and Molecular Biology. Oxford: Blackwell, pp. 1–15.

    Google Scholar 

  • Woese, C. R., and Fox, G. E., 1977. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proceedings of the National Academy of Sciences of the United States of America, 74, 5088–5090.

    Article  Google Scholar 

  • Woese, C. R., Kandler, O., and Wheelis, M., 1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences of the United States of America, 87, 4576–4579.

    Article  Google Scholar 

  • Wright, A. D. G., Toovey, A. F., and Pimm, C. L., 2006. Molecular identification of methanogenic archaea from sheep in Queensland, Australia reveal more uncultured novel archaea. Anaerobe, 12, 134–139.

    Article  Google Scholar 

  • Zachos, J. C., Dickens, G. R., and Zeebe, R. E., 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 451, 279–283.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Thiel, V. (2011). Archaea. In: Reitner, J., Thiel, V. (eds) Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9212-1_11

Download citation

Publish with us

Policies and ethics