Thermodynamics and Resource Consumption: Concepts, Methodologies, and the Case of Copper

  • Stefan Gößling-Reisemann
Reference work entry


Analysis and minimization of resource consumption is an essential aspect of sustainability. Engineers in this field need to be equipped with concepts and methodologies for assessment and sustainable design of products and processes. Thermodynamics offers these concepts and methodologies. In the current debate on material flows, the throughput of matter and energy is the primary focus. Consumption, however, starts when material and energy is transformed and loses its potential to be useful in further products or processes. On the physical level, this loss of potential utility is well described by entropy production or exergy destruction, two related concepts from thermodynamics. Using these concepts, methodologies for analyzing resource consumption were constructed and have been successfully applied to a large number of processes, products, and services. Here, a very brief introduction to thermodynamics is given to enable the interested reader to understand the underlying concepts and help in the application of thermodynamics to analyze resource consumption. Established measures for resource consumption can be grouped into those approaches which are based on the first law of thermodynamics (the conservation of energy and matter) and those approaches which are based on the second law of thermodynamics (entropy production and the devaluation of energy and matter). A brief summary of the currently used approaches is given and how they relate to the thermodynamic interpretation of resource consumption. Exergy and entropy analysis are introduced as analytical tools and also briefly explained, with recommendations for further self-study to get more familiar with the methodologies. An example, copper making from sulfidic ore concentrates is presented as a case study for the application of entropy analysis, and the results are compared to results from other (exergy) analyses. Finally, an interpretation of entropy production in the context of ecological sustainability and finite resources is offered, based on the finite entropy disposal rate of the earth, which enables the reader to evaluate the meaning of the presented results.


Material Flow Entropy Production Resource Consumption Exergy Analysis Exergy Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. S.H. Amini, J.A.M. Remmerswaal, M.B. Castro, M.A. Reuter, Quantifying the quality loss and resource efficiency of recycling by means of exergy analysis. J. Clean. Prod. 15(10), 907–913 (2007)CrossRefGoogle Scholar
  2. G. Angerer, L. Erdmann, F. Marscheider-Weidemann, M. Scharp, A. Lüllmann, V. Handke, M. Marwede, Rohstoffe für Zukunftstechnologien: Einfluss des branchenspezifischen Rohstoffbedarfs in rohstoffintensiven Zukunftstechnologien auf die zukünftige Rohstoffnachfrage. ISI-Schriftenreihe Innovationspotenziale (Fraunhofer Verlag, Stuttgart, 2009)Google Scholar
  3. I. Aoki, Entropy principle for human development, growth and aging. J. Theor. Biol. 150(2), 215–223 (1991)CrossRefGoogle Scholar
  4. I. Aoki, Entropy production in living systems – from organisms to ecosystems. Thermochim. Acta 250(2), 359–370 (1995)CrossRefGoogle Scholar
  5. I. Aoki, Entropy law in aquatic communities and the general entropy principle for the development of living systems. Ecol. Model. 215(1), 89–92 (2008)CrossRefGoogle Scholar
  6. K. Arrow, P. Dasgupta, L. Goulder, G. Daily, P. Ehrlich, G. Heal, S. Levin, K. Mäler, S. Schneider, Are we consuming too much? J. Econ. Perspect. 18(3), 147–172 (2004)CrossRefGoogle Scholar
  7. K. Arrow, G. Daily, P. Dasgupta, P. Ehrlich, L. Goulder, G. Heal, S. Levin, K. Mäler, S. Schneider, D. Starrett, B. Walker, Consumption, investment, and future well-being reply to Daly et al. Conserv. Biol. 21(5), 1363–1365 (2007)CrossRefGoogle Scholar
  8. R.U. Ayres, L.W. Ayres, A. Masini, An application of exergy accounting to five basic metal industries, in Sustainable Metals Management: Securing Our Future – Steps Towards a Closed Loop Economy, ed. by A. von Gleich, R.U. Ayres, S. Gößling-Reisemann. Eco-Efficiency in Industry and Science, vol. 19 (Springer, Dordrecht, 2006), pp. 141–194Google Scholar
  9. I. Barin, Thermochemical Data of Pure Substances, 3rd edn. (VCH, Weinheim, 1995)CrossRefGoogle Scholar
  10. A. Bejan, Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes. Advanced Topics in Mechanical Engineering Series, vol. 2 (CRC, Boca Raton, 1996)Google Scholar
  11. A. Bejan, G. Tsatsaronis, M.J. Moran, Thermal Design and Optimization (Wiley, New York, 1996)MATHGoogle Scholar
  12. L. Borel, D. Favrat, Thermodynamics and Energy Systems Analysis: From Energy to Exergy (EFPL/CRC, Lausanne, 2010)Google Scholar
  13. M.E. Bösch, S. Hellweg, M.A.J. Huijbregts, R. Frischknecht, Applying cumulative exergy demand (CExD) indicators to the ecoinvent database. Int. J. Life Cycle Assess. 12(3), 181–190 (2007)Google Scholar
  14. V.M. Brodyansky, The Efficiency of Industrial Processes: Exergy Analysis and Optimization (Elsevier, Amsterdam, 1994)Google Scholar
  15. M.B.G. Castro, J.A.M. Remmerswaal, M.A. Reuter, U.J.M. Boin, A thermodynamic approach to the compatibility of materials combinations for recycling. Resour. Conserv. Recycl. 43(1), 1–19 (2004)CrossRefGoogle Scholar
  16. Centre for Research in Computational Thermochemistry (CRCT), F*A*C*T – facility for the analysis of chemical thermodynamics: online database (2011),
  17. R. Clausius, Über die bewegende Kraft der Wärme. Ann. Phys. 79, 368–397, 500–524 (1850)CrossRefGoogle Scholar
  18. L. Connelly, C.P. Koshland, Exergy and industrial ecology—part 1: an exergy-based definition of consumption and a thermodynamic interpretation of ecosystem evolution. Exergy 1(3), 146–165 (2001a)CrossRefGoogle Scholar
  19. L. Connelly, C.P. Koshland, Exergy and industrial ecology—part 2: a non-dimensional analysis of means to reduce resource depletion. Exergy 1(4):234–255 (2001b)CrossRefGoogle Scholar
  20. R.L. Cornelissen, Thermodynamics and sustainable development – the use of exergy analysis and the reduction of irreversibility. Dissertation, University of Twente, 1997Google Scholar
  21. R.L. Cornelissen, G.G. Hirs, The value of exergetic life cycle assessment besides LCA. Energy Convers. Manag. 43(9), 1417–1424 (2002)CrossRefGoogle Scholar
  22. H. Daly, B. Czech, D. Trauger, W. Rees, M. Grover, T. Dobson, S. Trombulak, Are we consuming too much-for what? Conserv. Biol. 21(5), 1359–1362 (2007)CrossRefGoogle Scholar
  23. W.G. Davenport, E.H. Partelpoeg, Flash Smelting: Analysis, Control and Optimization (Pergamon, Oxford, 1987)Google Scholar
  24. J. Dewulf, H. van Langenhove, Assessment of the sustainability of technology by means of a thermodynamically based life cycle analysis. Environ. Sci. Pollut. Res. Int. 9(4), 267–273 (2002a)CrossRefGoogle Scholar
  25. J. Dewulf, H. van Langenhove, Quantitative assessment of solid waste treatment systems in the industrial ecology perspective by exergy analysis. Environ. Sci. Technol. 36(5), 1130–1135 (2002b)CrossRefGoogle Scholar
  26. J. Dewulf, M.E. Bösch, B. de Meester, G. van der Vorst, H.V. Langenhove, S. Hellweg, M.A.J. Huijbregts, Cumulative exergy extraction from the natural environment (CEENE) a comprehensive life cycle impact assessment method for resource accounting. Environ. Sci. Technol. 41(24), 8477–8483 (2007)CrossRefGoogle Scholar
  27. W. Ebeling, A. Engel, R. Feistel, Physik der Evolutionsprozesse (Akademie-Verl., Berlin, 1990)MATHGoogle Scholar
  28. European Commission, Economy-Wide Material Flow Accounts and Derived Indicators: A Methodological Guide (Office for Official Publications of the European Communities, Luxembourg, 2001)Google Scholar
  29. European Commission, Critical Raw Materials for the EU: Report of the Ad-hoc Working Group on defining critical raw materials, Brussels (2010)Google Scholar
  30. R.P. Feynman, R.B. Leighton, M.L. Sands, The Feynman Lectures on Physics. The Definitive and Extended Edition (Addison-Wesley, San Francisco/Harlow, 2009)Google Scholar
  31. N. Georgescu-Roegen, The Entropy Law and the Economic Process (Harvard University Press, Cambridge, 1971)Google Scholar
  32. P. Glansdorff, I. Prigogine, Thermodynamic Theory of Structure, Stability and Fluctuations (Wiley, London, 1971)MATHGoogle Scholar
  33. S. Gößling, Entropy production as a measure for resource use: method development and application to metallurgical processes. Dissertation. University of Hamburg, 2001,
  34. S. Gößling-Reisemann, What is resource consumption and how can it be measured?: Theoretical considerations. J. Ind. Ecol. 12(1), 10–25 (2008a)CrossRefGoogle Scholar
  35. S. Gößling-Reisemann, What is resource consumption and how can it be Measured? Application of entropy analysis to copper production. J. Ind. Ecol. 12(4), 570–582 (2008b)CrossRefGoogle Scholar
  36. S. Gößling-Reisemann, Entropy production and resource consumption in life cycle assessments, in Thermodynamics and the Destruction of Resources, ed. by B. Bakshi, T. Gutowski, D. Sekulic (Cambridge University Press, New York, 2011)Google Scholar
  37. S. Gößling-Reisemann, A. von Gleich, V. Knobloch, B. Cebulla, Bewertungsmaßstäbe für metallische Stoffströme: von Kritikalität bis Entropie, in Methoden der Stoffstromanalyse: Konzepte, agentenbasierte Modellierung und Ökobilanz, ed. by F. Beckenbach. Stoffstromanalysen, vol. 1, 1st edn. (Metropolis, Marburg, 2011)Google Scholar
  38. T. Graedel, D. van Beers, M. Bertram, K. Fuse, R. Gordon, A. Gritsinin, A. Kapur, R. Klee, R. Lifset, Multilevel cycle of anthropogenic copper. Environ. Sci. Technol. 38(4), 1242–1252 (2004)CrossRefGoogle Scholar
  39. C. Hagelüken, The challenge of open cycles – barriers to a closed loop economy demonstrated for consumer electronics and cars, in R’07 World Congress: Recovery of Materials and Energy for Resource Efficiency(EMPA, Davos, 2007)Google Scholar
  40. C. Hagelüken, M. Buchert, H. Stahl, Stoffströme der Platingruppenmetalle: Systemanalyse und Maßnahmen für eine nachhaltige Optimierung der Stoffströme der Platingruppenmetalle; Endbericht (GDMB-Medienverl., Clausthal-Zellerfeld, 2005)Google Scholar
  41. W.M. Haynes, D.R. Lide, CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data (CRC, Boca Raton, 2010)Google Scholar
  42. D. Janke, L. Savov, M.E. Vogel, Secondary materials in steel production and recycling, in Sustainable Metals Management: Securing Our Future – Steps Towards a Closed Loop Economy, ed. by A. von Gleich, R.U. Ayres, S. Gößling-Reisemann. Eco-Efficiency in Industry and Science, vol. 19 (Springer, Dordrecht, 2006), pp. 313–334Google Scholar
  43. Z. Kolenda, J. Donizak, A. Holda, J. Szmyd, M. Zembura, An analysis of cumulative energy and exergy consumption in copper production, in International Symposium ECOS’92: Conference Proceedings, Zaragoza (The American Society of Mechanical Engineers, New York, 1992), pp. 275–282Google Scholar
  44. D. Kondepudi, I. Prigogine, Modern Thermodynamics: From Heat Engines to Dissipative Structures (Wiley, Chichester, 1998)MATHGoogle Scholar
  45. T.J. Kotas, The Exergy Method of Thermal Plant Analysis (Krieger Publishing, Malabar, 1995)Google Scholar
  46. P. Linstrom, W. Mallard (eds.), NIST Chemistry WebBook ( NIST Standard Reference Database Number 69, June 2010. National Institute of Standards and Technology, Gaithersburg, 20899 (2010)
  47. Merriam-Webster, Definition of “consumption” (2011), Accessed 28 May 2011
  48. National Research Council (NRC), Minerals, Critical Minerals, and the U.S. Economy (The National Academies Press, Washington, DC, 2008)Google Scholar
  49. G. Nicolis, I. Prigogine, Self-organization in Non-equilibrium Systems: From Dissipative Structures to Order Through Fluctuations (Wiley, New York, 1977)Google Scholar
  50. Z. Rant, Exergie, ein neues Wort für technische Arbeitsfähigkeit. Forschung. Ing. Wesen 22, 36–37 (1956)Google Scholar
  51. H. Rechberger, Entwicklung einer Methode zur Bewertung von Stoffbilanzen in der Abfallwirtschaft. Wiener Mitteilungen, vol. 158 (Technical University Institute für Wassergüte und Abfallwirtschaft, Wien, 1999)Google Scholar
  52. H. Rechberger, T. Graedel, The contemporary European copper cycle: statistical entropy analysis. Ecol. Econ. 42(1), 59–72 (2002)CrossRefGoogle Scholar
  53. M.A. Reuter, U.M.J. Boin, A. van Schaik, E.V. Verhoef, K. Heiskanen, Y. Yang, G. Georgalli, The Metrics of Material and Metal Ecology: Harmonizing the Resource, Technology and Environmental Cycles (Elsevier, Amsterdam, 2005)Google Scholar
  54. M. Ritthoff, H. Rohn, C. Liedtke, Calculating MIPS: Resource Productivity of Products and Services. Wuppertal Spezial, vol. 27 (Wuppertal-Institute for Climate, Environment and Energy, Wuppertal, 2002)Google Scholar
  55. M.A. Rosen, Economics and Exergy: An Enhanced Approach to Energy Economics (Nova Science Publisher’s, Hauppauge, 2010)Google Scholar
  56. F. Schmidt-Bleek, MAIA: Einführung in die Material-Intensitäts-Analyse nach dem MIPS-Konzept. Wuppertal Texte (Birkhäuser, Berlin, 1998)Google Scholar
  57. F. Schmidt-Bleek, R. Klüting, Wieviel Umwelt braucht der Mensch?: MIPS – das Maß für ökologisches Wirtschaften (Birkhäuser, Berlin, 1994)CrossRefGoogle Scholar
  58. T. Seager, T. Theis, A uniform definition and quantitative basis for industrial ecology. J. Clean. Prod. 10(3), 225–236 (2002)CrossRefGoogle Scholar
  59. M. Stewart, B.P. Weidema, A consistent framework for assessing the impacts from resource use – a focus on resource functionality. Int. J. Life Cycle Assess. 10(4), 240–247 (2005)CrossRefGoogle Scholar
  60. J. Szargut, Exergy Method: Technical and Ecological Applications. Developments in Heat Transfer, vol. 18 (WIT, Southampton, 2005)Google Scholar
  61. J. Szargut, D.R. Morris, F.R. Steward, Exergy Analysis of Thermal, Chemical and Metallurgical Processes (Hemisphere Publishing, New York, 1988)Google Scholar
  62. G. Tsatsaronis, Design optimization using exergoeconomics, in Thermodynamic Optimization of Complex Energy Systems, ed. by A. Bejan, E. Mamut. Proceedings of the NATO Advanced Study Institute on Thermodynamics and the Optimization of Complex Energy Systems, Neptun, July 1998. 3, High Technology, vol. 69 (Kluwer, Dordrecht/Boston, 1999), pp. 101–115Google Scholar
  63. VDI Gesellschaft Energietechnik, Kumulierter Energieaufwand Begriffe, Definitionen, Berechnungsmethoden: Cumulative Energy Demand Terms, Definitions, Methods of Calculation. VDI-Richtlinien, 4600 (Beuth, Berlin, 1997)Google Scholar
  64. A. von Gleich, Outlines of a sustainable metals industry, in Sustainable Metals Management: Securing Our Future – Steps Towards a Closed Loop Economy, ed. by A. von Gleich, R.U. Ayres, S. Gößling-Reisemann. Eco-Efficiency in Industry and Science, vol. 19 (Springer, Dordrecht, 2006), pp. 3–39Google Scholar
  65. Wuppertal Institut, MIPS Online (2011), Accessed 28 May 2011

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Stefan Gößling-Reisemann
    • 1
  1. 1.Faculty of Production Engineering, Division of Technological Design and Developmentartec | Research Center for Sustainability Studies, University of BremenBremenGermany

Personalised recommendations