Skip to main content

Light Scattering from Multicomponent Polymer Systems in Shear Fields: Real-time, In Situ Studies of Dissipative Structures in Open Nonequilibrium Systems

  • Reference work entry
Soft Matter Characterization

1 Introduction

1.1 General Background

This chapter discusses self-assembly of polymer solutions and solutions of polymer mixtures under external fields, specifically under shear fields, as observed by real-time and in situ light scattering (LS). Although shear-induced structures of solutions of polymer mixtures will be discussed in some parts of this chapter, the discussion can be in principle extended to shear-induced structures of binary polymer mixtures in bulk. This is because the solvent used is a neutral solvent which effectively weakens segmental interactions of polymers as will be detailed later (Section 5.1 ).

Our research theme to be treated here is considered to belong to the general theme on pattern formation in nature. This is because the pattern formation in various systems in nature occurs under the influence of external fields and is inherently related to the self-assembly in the so-called open nonequilibrium systems, i.e., systems that are open to various external...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    At this stage, a general remark applicable to this chapter as a whole is noted, independently of the content of the particular section under consideration. This chapter intends to give a theoretical interpretation of the shear-induced phase transition or shear-induced changes in the critical temperatures (drop (Section 5.5 ) or up (Section 6.1 )) on the basis of the basic kinetic equation (e.g., HFMO theory introduced in the beginning of this chapter). However, it should be pointed out that there is the thermodynamic approach also. This approach phenomenologically incorporates the effects of steady flow on the systems by adding a stored energy term to the Gibbs free energy of mixing in order to account for the shear-induced mixing and demixing [86–94]. It is natural, however, that the thermodynamic approach does not predict the dynamics of the phase transition process and the shear-induced structures.

References

  1. Wu, X-L., Pine, D.J., and Dixon, P.K. (1991) Phys. Rev. Lett., 66, 2408.

    Article  ADS  Google Scholar 

  2. Hashimoto, T., Takebe, T., and Fujioka, K. (1990) Phase Transition and Self-Assembling Structures of Polymer Mixtures and Sheer Flow. In Onuki, A. and Kawasaki, K (eds.), Dynamics and Patterns in Complex Fluids. Springer, Berlin, p. 86.

    Chapter  Google Scholar 

  3. Helfand E. and Fredickson, G.H. (1989) Phys. Rev. Lett., 62, 2468.

    Article  ADS  Google Scholar 

  4. Milner, S. T. (1993) Phys. Rev. E., 48, 3674.

    Article  ADS  Google Scholar 

  5. Onuki, A. (1997) J. Phys. Condens Matter, 9, 6119.

    Article  ADS  Google Scholar 

  6. Nicolis, G. and Prigogine, I. (1997) Self-organization in Non-equilibrium Systems, Wiley, New York.

    Google Scholar 

  7. Touring, A.M. (1952) Phil. Trans. Roy Soc. Lond. B., 237, 37.

    Article  ADS  Google Scholar 

  8. Belousov, B.P. (1959) Sb. ref. radats. med.; Vavilin,V.A., Zhabotinsky, A.M., Yaguzhinsky, L.S. (1967) Oscillatory Processes in Biological and Chemical Systems. Science Publishers, Moscow.

    Google Scholar 

  9. Silberberg, A. and Kuhn, W. (1952) Nature, 170, 450; Silberberg, A. and Kuhn, W. (1954) J. Polym. Sci., 13, 21.

    Google Scholar 

  10. de Gennes, P.G. (1979) Scaling Concept in Polymer Physics, Cornell University, Ithaca.

    Google Scholar 

  11. Hashimoto, T. (2005) Bull. Chem. Soc. Jpn., 78, 1.

    Article  Google Scholar 

  12. Onuki, A. (2002) Phase Transition Dynamics, Cambridge University Press, Cambridge, UK.

    Book  MATH  Google Scholar 

  13. Yoshida, H., Ise, N., and Hashimoto, T. (1995) J. Chem. Phys., 103, 10146.

    Article  ADS  Google Scholar 

  14. Derjaguin, B.V. and Landau, L. (1941) Acta Physiochim., 14, 633.

    Google Scholar 

  15. Verwey, E.J.W. and Overkeek, J.Th.G. (1948) Theory of the Stability of Lyophobic Colloids, Elsevier, Amsterdam.

    Google Scholar 

  16. Tanaka, H. (1992) Macromolecule, 25, 6377.

    Article  ADS  Google Scholar 

  17. Toyoda, N., Takenaka, M., Saito, S., and Hashimoto T. (2001) Polymer, 42, 9193.

    Article  Google Scholar 

  18. Takenaka, M., Takeno, H., Hasegawa, H., Saito S., Hashimoto, T., and Nagao M. (2002) Phys. Rev. E., 65, 021806–021811.

    ADS  Google Scholar 

  19. Izumitani T. and Hashimoto, T. (1985) J. Chem. Phys. 83, 3694.

    Article  ADS  Google Scholar 

  20. Cahn, J.W. (1965) J. Chem. Phys. 42, 93.

    Article  ADS  Google Scholar 

  21. Hashimoto, T. (1993) In Cahn, R.W., Kramer, E.J., and Haasen, P. (ed.), Materials Science and Technology, vol 12. Structure and Properties of Polymers, Thomas E.L. (ed.), VCH, Weinheim, Chap. 6, p. 251.

    Google Scholar 

  22. Hashimoto, T. (1988) Phase Transitions, 12, 47.

    Article  Google Scholar 

  23. Takenaka, M., Izumitani, T., Hashimoto, T. (1990) J. Chem. Phys., 92, 4566.

    Article  ADS  Google Scholar 

  24. Doi, M. and Onuki, A. (1992) J. Phys II, 2, 1631.

    Article  Google Scholar 

  25. Onuki, A. (1994) J. Non-Crystalline Solids 172, 1151.

    Article  ADS  Google Scholar 

  26. Cahn, J.W. and Hilliard, J.E. (1958) J.Chem. Phys., 29, 258.

    Article  ADS  Google Scholar 

  27. Cook, H.E. (1970) Acta Metall., 18, 297.

    Article  Google Scholar 

  28. Landau, L.D. and Lifshitz, E.M. (1964) Statistical Physics, Pergamon, New York.

    Google Scholar 

  29. Kawasaki, K. and Ohta, T. (1978) Progr. Theor. Phys., 59, 362.

    Article  ADS  Google Scholar 

  30. Ma, S.K. (1976) Modern Theory of Critical Phenomena, Benjamin-Cummings, Boston, MA.

    Google Scholar 

  31. Matsuzaka, K. and Hashimoto T. (1999) Rev. Sci. Instrum., 70, 2387.

    Article  ADS  Google Scholar 

  32. Kume, T., Asakawa, K., Moses, E., Matsuzaka, K., Hashimoto, T. (1995) Acta Polym., 46, 79.

    Article  Google Scholar 

  33. Kume, T., Hattori, T., Hashimoto, T. (1997) Macromolecules, 30, 427.

    Article  ADS  Google Scholar 

  34. Hashimoto, T., Takebe, T., Suehiro, S. (1986) Polym. J., 18, 123.

    Article  Google Scholar 

  35. Suehiro, S., Saijo, K., Seto, T., Sakamoto, N., Hashimoto, T., Ito, K., Amemiya, Y. (1996) J. Synchrotron Radiate, 3, 225.

    Article  Google Scholar 

  36. Suehiro, S., Saijo, K., Ohta, Y., Hashimoto T., Kawai, H. (1986) Anayl. Chim. Acta., 189, 41.

    Article  Google Scholar 

  37. Matsuoka, H., Tanaka, H., Iizuka, N., Hashimoto, T., Ise, N. (1990) Phys. Rev. B., 41, 3854.

    Article  ADS  Google Scholar 

  38. Okamoto, S., Saijo, K., Hashimoto, T. (1994) Macromolecules, 27, 3753.

    Article  ADS  Google Scholar 

  39. Onuki, A. and Hashimoto, T. (1989) Macromolecules 22, 879.

    Article  ADS  Google Scholar 

  40. Takebe, T., Sawaoka, R., Hashimoto, T. (1989) J. Chem. Phys. 91, 4369.

    Article  ADS  Google Scholar 

  41. Hashimoto, T., Matsuzaka, K., Moses, E., Onuki, A. (1995) Phys. Rev. Lett. 71, 126.

    Article  ADS  Google Scholar 

  42. Matsuzaka, K., Koga, T., Hashimoto, T. unpublished result.

    Google Scholar 

  43. Hashimoto, T. Matsuzaka, K. Kume, T., Moses, E. (1994) Polymer Prepr., 71, 111.

    Google Scholar 

  44. (a) Takabe, T., Fujioka, K., Sawaoka, R., Hashimoto, T. (1990) J. Chem. Phys. 93, 5271;

    Article  ADS  Google Scholar 

  45. (b) Hashimo, T., Takebe, T., Asakawa, K. (1993) Physica A, 194, 338.

    Article  ADS  Google Scholar 

  46. Hobbie, H.K., Kim, S., Han, C.C. (1996) Phys. Rev. E., 54, R5909.

    Article  ADS  Google Scholar 

  47. Jeon, H.S., Nakatani, A.I., Hobbie, E.K., and Han, C.C. (2001) Langmuir, 17, 3087.

    Article  Google Scholar 

  48. Yu, J.-W., Douglass, J.F., Hobbie, E.K., Kim, S., and Han, C.C. (1997) Phys. Rev. Lett., 78, 2664.

    Article  ADS  Google Scholar 

  49. Kim. S., Hobbie, E.K., Yu, J.W., and Han, C.C. (1997) Macromolecules, 30, 8245.

    Article  ADS  Google Scholar 

  50. Hashimoto, T., Matsuzaka, K., and Fujioka, K. (1998) J. Chem. Phys., 108, 6963.

    Article  ADS  Google Scholar 

  51. Tomotika, S. (1935) Proc. Roy. Soc. Lond., 150, 322.

    Article  ADS  MATH  Google Scholar 

  52. Kume, T. and Hashimoto, T. (1995) in Flow-Induced Structure in Polymers, ACS Symp. Ser., 597, 35.

    Article  Google Scholar 

  53. Matsuzaka, K. and Hashimoto, T., unpublished work.

    Google Scholar 

  54. Nakatani, A.I. and Han, C.C. (1998) In (under investigation) Araki, T., Trang-Cong, Q., and Shibayama, M. (eds.), Structure and Properties of Multiphase Polymeric Materials. M. Dekker, New York, Chap. 7.

    Google Scholar 

  55. Vinckier, I., Mewis, J., and Moldenaers, P. (1997) J. Rheol. Acta, 36, 513.

    Article  Google Scholar 

  56. Vinckier, I., Moldenaers, P., and Mewis, J. (1997) J. Rheol., 41, 705.

    Article  ADS  Google Scholar 

  57. Van Puyvelde, P., Yang, H., Mewis, J., and Moldenaers, P. (1998) J. Colloid Interface Sci., 200, 86.

    Article  Google Scholar 

  58. Mewis, J. Yang, H., Van Puyvelde, P., Moldenaers, P., and Walker, L.M. (1998) Chem. Eng. Sci., 53, 2231.

    Article  Google Scholar 

  59. Yang, H., Zhang, H.J., Moldenaers, P., and Mewis, J. (1998) J. Polym., 39, 5731.

    Article  Google Scholar 

  60. Minnale, M., Moldenaers, P., and Mewis, J. (1999) J. Rheol., 43, 815.

    Article  ADS  Google Scholar 

  61. Vincker, I., Mewis, J., and Moldenaers, P. (1999) Rheol. Acta, 38, 65 and 198.

    Article  Google Scholar 

  62. Hashimoto, T., Takebe, T., and Suehiro, S. (1988) J. Chem. Phys., 88, 5874.

    Article  ADS  Google Scholar 

  63. Nakatani, A.I., Kim, H., Takahashi, Y., Matsushita, Y., Takano, A., Bauer, B., and Han, C.C. (1990) J. Chem. Phys., 93, 795.

    Article  ADS  Google Scholar 

  64. Hair, D.W., Hobbie, E.K., Nakatani, A.I., and Han, C.C. (1992) J. Chem. Phys., 96, 9133.

    Article  ADS  Google Scholar 

  65. Hair, D.W., Hobbie, E.K., Douglass, J.F., and Han, C.C. (1992) Phys. Rev. Lett., 68, 2476.

    Article  ADS  Google Scholar 

  66. Hobbie, E.K., Nakatani, A.I., Yajima, H., Douglass, J.F., and Han, C.C. (1996) Phys. Rev. E. Rapid Commun., 53, R4322.

    Article  ADS  Google Scholar 

  67. Hindawi, I.A., Higgins, J.S., Galambos, A.F., and Weiss, R.A. (1990) Macromolecules, 23, 670.

    Article  ADS  Google Scholar 

  68. Chen, Z.J., Wu, R.J., Shaw, M.T., Weiss, R.A., Ferandez, M.L., and Higgins, J.S. (1995) Polym. Eng. Sci., 35, 92.

    Article  Google Scholar 

  69. Debye, P. and Buecke, A.M. (1949) J. Appl. Phys., 20, 518.

    Article  ADS  Google Scholar 

  70. Debye, P., Anderson, H. R., and Brumberger, A.M. (1957) J. Appl. Phys., 28, 679.

    Article  ADS  Google Scholar 

  71. Ornstein, L.S. and Zerncike, Z. (1914) Proc. Akad. Sci. (Amsterdam), 17, 783; Ornstein, L.S. and Zerncike, Z. (1918) Phys. Z., 19, 134; Ornstein, L.S. and Zerncike, Z. (1926) Phys. Z. 217, 761.

    Google Scholar 

  72. Mani, S., Malone, M.F., Winter, H.H., Halary, J.L., and Monnerie, L. (1991) Macromolecules, 24, 5451.

    Article  ADS  Google Scholar 

  73. Mani, S., Malone, M.F., and Winter, H.H. (1992) Macromolecules, 25, 5671.

    Article  ADS  Google Scholar 

  74. Hindawi, I.A, Higgins, J.S., and Weiss, R.A. (1992) Polymer, 33, 2522.

    Article  Google Scholar 

  75. Gerard, H. and Higgins, I.S. (1991) Phys. Chem. Chem. Phys., 1, 3059.

    Article  Google Scholar 

  76. Gerard, H., Cabral, J.T., and Higgins, J.S. (2003) Phil. Trans. Soc. Lond. A, 361, 767.

    Article  ADS  Google Scholar 

  77. Chopra, D., Vlassopoulos, D., and Hatzikiriakos, S.G. (1998) J. Rheol., 42, 1227.

    Article  ADS  Google Scholar 

  78. Takebe, T. and Hashimoto T. (1988) Polym. Commun., 29, 227; ibid, 29, 261.

    Google Scholar 

  79. Beysens, D. and Gbadamassi, M. (1979) J. Phys. Lett., 40, L565.

    Article  Google Scholar 

  80. Gunton, J.D., San Miguel M., and Sahni, P.S. (1983) The Dynamics of First Order Phase Transition. In Domb, C. and Lebowitz, J. (ed.), Phase Transitions and Critical Phenomena, vol 8. Academic Press, New York, p. 269.

    Google Scholar 

  81. Onuki, A. and Kawasaki, K. (1978) Progr. Theor. Phys. Supp., 64, 1978.

    Google Scholar 

  82. Onuki, A., Yamazaki, K., and Kawasaki, K. (1981) Ann. Phys., 131, 217.

    Article  ADS  Google Scholar 

  83. Onuki, A. (1986) Physica A, 140, 204.

    Article  ADS  Google Scholar 

  84. Hashimoto, T., Izumitani, T., and Takenaka, M. (1989) Macromolecules, 22, 2293.

    Article  ADS  Google Scholar 

  85. Hashimoto, T. and Izumitani, T. (1993) Macromolecules, 26, 3631.

    Article  ADS  Google Scholar 

  86. Ribbe, A. and Hashimoto, T. (2000) Macromolecules, 33, 7827.

    Article  ADS  Google Scholar 

  87. Rangel-Nafaile, C., Metzner, A.B., and Wissbrun, K.F. (1984) Macromolecules, 17, 1187.

    Article  ADS  Google Scholar 

  88. Wolf, B.A. (1984) Macromolecules, 17, 615.

    Article  ADS  Google Scholar 

  89. Horst, R. and Wolf, B.A. (1992) Macromolecules, 25, 5291.

    Article  ADS  Google Scholar 

  90. Horst, R. and Wolf, B.A. (1993) Macromolecules, 26, 5676.

    Article  ADS  Google Scholar 

  91. Fernandez, M.L., Higgins, J.S., Horst, R., and Wolf, B.A. (1995) Polymer, 36, 149.

    Article  Google Scholar 

  92. Soontaranun, W., Higgins, J.S., and Papathanaisou, T.D. (1996) Fluid Phase Equilib., 121, 273.

    Article  Google Scholar 

  93. Fukuda, T., Fujimoto, K., Tsuji, Y., and Miyamoto, T. (1996) Macromolecules, 29, 3300.

    Article  ADS  Google Scholar 

  94. Fukuda, T., Fujimoto, K., Murakami, M., Kawabata, K., Miyamoto, T. (1996) Macromol. Symp., 101, 147.

    Article  Google Scholar 

  95. Chopra, D., Haynes, C., Hatzikiriakos, S.G., and Vlassopoulos, D. (1999) J. Non-Newtonian Fluid Mech., 82, 367.

    Article  MATH  Google Scholar 

  96. Takeno, H., Iwata, M., Takenaka, M., and Hashimoto, T. (2000) Macromollecules, 33, 9657.

    Article  ADS  Google Scholar 

  97. Varmant, J., Van Puyvelde, P., Moldenaers, P., Mewis, J., and Fuller, G.G. (1998) Langmuir, 14, 1612.

    Article  Google Scholar 

  98. Van Puyvelde, P., Yang, H., Mewis, J., and Moldeners, P. (2000) J. Rheol., 44, 1401.

    Article  ADS  Google Scholar 

  99. Ver Strate, G. and Phillipoff, W. (1974) J. Polm. Sci. Polym. Lett. Ed., 12, 267.

    Article  Google Scholar 

  100. Schmidt, R. and Wolf, B.A. (1979) Colloid. Polym. Sci., 257, 1187.

    Article  Google Scholar 

  101. Kramer, H. and Wolf, B.A. (1985) Makromol. Chem. Rapid Commun., 6, 21.

    Article  Google Scholar 

  102. Hashimoto, T. and Fujioka, K. (1991) J. Phys. Soc. Jpn., 60, 356.

    Article  ADS  Google Scholar 

  103. Yanase, H., Moldenaers, P., Mewis, J., Abetz, V., van Egmond J. W., and Fuller, G.G. (1991) Rheol. Acta., 30, 89.

    Article  Google Scholar 

  104. Hashimoto, T. and Kume, T. (1992) J. Phys. Soc. Jpn., 61, 1839.

    Article  ADS  Google Scholar 

  105. van Egmond, J.W., Werner, D.F., and Fuller, G. (1992) J. Chem. Phys., 96, 7742.

    Article  ADS  Google Scholar 

  106. van Egmond, J.W. and Fuller, G.G. (1993) Macromolecules, 26, 7182.

    Article  ADS  Google Scholar 

  107. Boué, F. and Lindner, P. (1994) Europhys. Lett., 25, 421.

    Article  ADS  Google Scholar 

  108. Morfin, I., Lindner, P., and Boue, F. (1999) Macromolecules, 32, 7208.

    Article  ADS  Google Scholar 

  109. Moses, E., Kume, T., and Hashimoto, T. (1994) Phys. Rev. Lett., 72, 2037.

    Article  ADS  Google Scholar 

  110. Murase, E., Kume, T., Hashimoto, T., Ohta, Y., and Mizukami, T. (1996) Macromol Symp., 104, 159.

    Article  Google Scholar 

  111. Murase, H., Kume, T., Hashimoto, T., Ohta, Y., and Mizukami, T. (1995) Macromolecules, 28, 7724.

    Article  ADS  Google Scholar 

  112. Saito, S. and Hashimoto, T. (2001) J. Chem. Phys., 114, 10531.

    Article  ADS  Google Scholar 

  113. Endo, M.K., Saito, S., and Hashimoto, T. (2002) Macromolecule, 35, 7692.

    Article  ADS  Google Scholar 

  114. Murase, H., Kume, T., Hashimoto, T., and Ohta, Y. (2005) Macromolecules, 38, 6656.

    Article  ADS  Google Scholar 

  115. Murase, H., Kume, T., Hashimoto, T., and Ohta, Y. (2005) Macromolecules, 38, 8719.

    Article  ADS  Google Scholar 

  116. deGroot, Jr. J.V., Macosko, C.W., Kume, T., and Hashimoto, T. (1994) J. Colloid Interface Sci., 166, 404.

    Article  Google Scholar 

  117. Gerard, H., Higgins, J.S., and Clarke, N. (1999) Macromolelcules, 32, 5411.

    Article  ADS  Google Scholar 

  118. Saito, S., Matsuzaka, K., and Hashimto, T. (1999) Macromolecules, 32, 4879.

    Article  ADS  Google Scholar 

  119. Endo, M.K., Takenaka, M., Inoue, T., Watanabe, H., and Hashimoto, T. (2008) J. Chem. Phys. 128, 164911.

    Article  ADS  Google Scholar 

  120. Saito, S., Hashimoto, T., Morfin, I., Lindner, P., and Boue, F. (2002) Macromolecules, 35, 445.

    Article  ADS  Google Scholar 

  121. Kume, T., Hashimoto, T., Takahashi, T., and Fuller, G.G. (1997) Macromolecules, 30, 7232.

    Article  ADS  Google Scholar 

  122. Doi, M., and Edwards, S.F. (1979) J. Chem. Soc., Faraday Trans. 2, 75, 32; The Theory of Polymer Dynamics (1986) Oxford University Press, London, U.K.

    Google Scholar 

  123. Saito, S., Koizumi, S., Matsuzaka, K., Suehiro, S., and Hashimoto, T. (2000) Macromolecules, 33, 2153.

    Article  ADS  Google Scholar 

  124. Saito, S., Hashimoto, T., Morfin, I., Lindner, P., Boué, F., and Pine, D.J. (2003) Macromolecules, 36, 3745.

    Article  ADS  Google Scholar 

  125. Takenaka, M., Miyazawa, M., Nishitsuji, S., and Hashimoto, T. (2004) J. Chem. Phys., 121, 7501.

    Article  ADS  Google Scholar 

  126. Endo, M., Takenaka, M., and Hashimoto, T., (2006) Polymer, 47, 7271.

    Article  Google Scholar 

  127. Rietveld, J. and McHugh, A.J. (1985) J. Polym. Sci., Polym. Phys. Ed., 23, 2339.

    Article  ADS  Google Scholar 

  128. McHugh, A.J. and Rietveld, J. (1985) J. Polym. Sci., Polym. Phys. Ed., 23, 2359.

    Article  ADS  Google Scholar 

  129. McHugh, A.J. and Spevacek, J.A. (1991) J. Polym. Sci. B Polym. Phys., 29, 969.

    Article  ADS  Google Scholar 

  130. McHugh, A.J. and Edwards, B.J. (1995) Flow-Induced Structure Formation in Polymer Solutions. In Jørgensen, L.J. and Søndergaard, K. (eds.), Rheo-Physics of Multiphase Polymeric Systems. Technomic Publishing, Lancaster, PA, Chap. 5; McHugh, A. J. ibid, Flow-Induced Crystallization in Polymers, Chap. 6.

    Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges prof. A. Onuki for his collaboration, enlightening comments, and discussion on the subject of this chapter. The author is deeply grateful for professors J.S. Higgins and J. Mewis who have read the text and given valuable comments. The author thanks also professors C.C. Han and H.H. Winter for many comments on this chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Glossary of Symbols

\(\alpha _{\rm{a}}\)

Parameter characterizing for dynamical asymmetry defined by eq. 6

c/c*

Reduced polymer concentration for polymer solutions

c*

Overlap polymer concentration for polymer solutions

C g

A constant related to the gradient free energy arising from the nonlocality of interactions

CHC

Cahn–Hilliard–Cook

DP

Degree of polymerization

DOP

Dioctylphthalate

\(\delta \phi , \delta \phi ({{\bf r}},t)\)

Local concentration fluctuations of polymer for polymer solutions or one component of polymer in binary polymer mixtures at position r and time t

D app

Collective diffusivity for binary mixtures

D K (K = A or B)

Self-diffusivity of K-th component.

\({\rm \Delta} {T}(0)\)

Quench depth at \(\dot \gamma = 0,{\rm{ }}{\rm \Delta} {T}(0){ = T}_{\rm c} - {T}\) with T c being critical temperature at \(\dot \gamma\)= 0

\(\eta\)

Shear viscosity

\(\eta _0\)

Zero-shear viscosity

FFT

Fast Fourier transform

GL

Ginzburg–Landau

\(\gamma _{{\mathop{\rm int}} }\)

Interfacial tension

\(\gamma\)

Shear strain

\(\gamma _0\)

Amplitude of oscillatory shear strain

\(\dot \gamma\)

Shear rate

\(\dot \gamma _{{\rm{c,\ single}}}\)

Critical shear rate above which shear-induced single-phase formation occurs for binary mixtures

\(\dot \gamma _{{\rm{c}},\ x}\)

Critical shear rate for shear-induced concentration fluctuations above which scattered intensity along the flow direction (the x axis) starts to increase

\(\dot \gamma _{{\rm{c}}z}\)

Critical shear rate for shear-induced demixing above which scattered intensity along the neutral axis (the z axis) starts to increase

\(\dot \gamma _{\rm{a}}\)

Critical shear rate for shear-induced demixing systems above which anomalies are observed in both scattering and rheological properties

\({\bf \it\Gamma} _{{\rm{conc}}}\)

Relaxation rate for concentration fluctuations in binary mixtures

\({\bf \it\Gamma} _{\rm{d}}\)

Relaxation rate for deformation of polymer chains

\({\bf \it\Gamma} _{{\rm{dis}}}\)

Relaxation rate for disentanglement in entangled polymer systems

\(\xi\)

Mesh size of entangled polymer networks

\(\xi _{\rm T}\)

Thermal correlation length

\(\xi _0\)

Average value of \(\xi\)

\(\xi _{{\rm{ve}}}\)

Viscoelastic length defined in eq. 13

\((\xi _ \bot )_{\rm{d}}\)

Correlation length of string-like domain structures perpendicular to the string axis

\((\xi _ \bot )_{{\rm{fl}}}\)

Correlation length for thermal concentration fluctuation along the neutral axis (the z axis)

I(q, t)

Scattering intensity distribution with q at time t after onset of phase separation

k B

Boltzmann constant

LAOS

Large amplitude oscillatory shear flow (strain)

LS

Light scattering

LSCM

Laser scanning confocal microscopy

\(\Lambda (q)\)

q-Dependent Onsager kinetic coefficient

\(\Lambda (0)\)

\(\Lambda (q)\) at \(q \to 0\)

\(\Lambda _{\rm{m}} (0)\)

Characteristic length of systems undergoing spinodal decomposition in the early stage spinodal decomposition which characterizes Fourier modes of fluctuations having a maximum growth rate

M W, M N

Weight and number average molecular weight, respectively

N K (K = A or B)

Degree of polymerization of K-th component

N 1

The first normal stress difference

OM

(transmission) Optical microscope

OZ

Ornstein–Zernicke equation (eqs. 28 and 29)

\(\omega\)

Angular frequency in oscillatory shear strain

PB

Polybutadiene

PI

Polyisoprene

PS

Polystyrene

\(\phi ({\rm{\bf r}},t)\)

Local concentration of polymer in polymer solutions or one polymer component in binary polymer mixtures at position r and time t

\(\phi _K ({\rm{\bf r}},t)\) (K = A or B)

local composition of K-th component in binary mixtures

\(\phi _0\)

Average of \(\phi ({\rm{\bf r}},t)\) or average of \(\phi _K ({\rm{\bf r}},t)\) for one of the components (K = A or B) in binary mixtures

\(\phi _{\rm{s}}\)

Strain phase in oscillatory shear strain

q

Scattering vector or wave vector for Fourier modes

q

Magnitude of q, q = \((4{\rm{\pi }}/\lambda )\sin (\theta /2)\) (\(\lambda\) and \(\theta\) being wavelength of incident beam and scattering angle in a scattering medium)

q x ,q y , q z

Component of q along flow direction, velocity gradient direction, and neutral direction, respectively

q m

q at a scattering maximum

q m(0)

Characteristic wave number which characterizes the Fourier modes of composition (or concentration) fluctuations having a maximum growth rate in early stage of spinodal decomposition

r

Length scale of observation

R g

Radius of gyration of polymer

SALS

Small-angle light scattering

SBR

Random copolymer of styrene and butadiene, poly(styrene-r-butadiene)

SD

Spinodal decomposition

SQL

Squared Lorentzian function (eqs. 25 and 26) predicted by Debye–Bueche theory [68]

shear-SALS

SALS under shear flow

shear-OM

Transmission optical microscopy under shear flow

\(\psi _1\)

Coefficient of the first normal stress difference

\(\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\leftrightarrow$}} \over \sigma }\)

Shear stress tensor

\(\sigma\)

Shear stress

\(\theta\)

Scattering angle

t c(\({\rm \Delta} {T}\))

Characteristic time of mixtures at quench depth \({\rm \Delta} {T}(0)\)

\(\tau\)

Characteristic time in binary mixtures as defined by \(\tau = [q_{\rm{m}} ^2 (0)/D_{{\rm{app}}} ]^{ - 1}\)

\(\tau _p\)

\(\tau\) for polymer mixtures

\(\tau _s\)

\(\tau\) for small-molecule mixtures

T

Absolute temperature

T c(0)

Critical temperature of mixtures at \(\dot \gamma = 0\)

T c(\(\dot \gamma\))

Critical temperature of mixtures under shear flow at \(\dot \gamma \ne 0\)

T cl

Cloud-point temperature

t I

Characteristic interface thickness

TDGL

Time-dependent Ginzburg–Landau equation (theory)

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this entry

Cite this entry

Hashimoto, T. (2008). Light Scattering from Multicomponent Polymer Systems in Shear Fields: Real-time, In Situ Studies of Dissipative Structures in Open Nonequilibrium Systems. In: Borsali, R., Pecora, R. (eds) Soft Matter Characterization. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4465-6_8

Download citation

Publish with us

Policies and ethics