Skip to main content

Polyelectrolytes-Theory and Simulations

  • Reference work entry
Soft Matter Characterization

1 Introduction

Polyelectrolytes are polymers that have the ability to dissociate charges in polar solvents, which result in charged polymer chains (macroion) and mobile counterions. They represent a broad and interesting class of soft matter [1], which enjoys an increasing attention in the scientific community. For example, in technical applications polyelectrolytes are used as viscosity modifiers to reduce drag in oil pipelines, or to make low-fat dairy products creamy. They are used in sewage plants to clean water by precipitating heavy metal ions. They are also responsible for the ability of sanitary napkins or baby-diapers to absorb enormous amounts of water, and are hence called superabsorbers.

A thorough understanding of charged soft matter has become of great interest also in biochemistry and molecular biology. This is due to the fact that virtually all proteins, as well as other biopolymer, such as DNA, actin, or microtubules are polyelectrolytes. Moreover, the cell membrane is...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hara, M. (1993) Polyelectrolytes: Science and Technology. Marcel Dekker, New York.

    Google Scholar 

  2. Holm, C., Kékicheff, P., and Podgornik, R. (2001) Electrostatic Effects in Soft Matter and Biophysics, vol. 46 of NATO Science Series II – Mathematics, Physics and Chemistry. Kluwer Academic Publishers, Dordrecht, Netherlands.

    Google Scholar 

  3. Netz, R.R. and Andelman, D. (2003) Phys. Rep., 380, 1.

    Article  ADS  MATH  Google Scholar 

  4. Boroudjerdi, H., Kim, Y.-W., Naji, A., Netz, R.R., Schlagberger, X., and Serr, A. (2005) Phys. Rep., 416, 129.

    Article  ADS  Google Scholar 

  5. Naji, A., Jungblut, S., Moreira, A.G, and Netz, R.R. (2005) Physica A, 352, 131.

    Article  ADS  Google Scholar 

  6. Barrat, J.-L. and Joanny, J.-F. (1996) Adv. Chem. Phys., 94, 1.

    Article  Google Scholar 

  7. Katchalsky, A. (1971) Pure Appl. Chem., 26, 327.

    Article  Google Scholar 

  8. Deserno, M. and Holm, C. (2001) In Holm, C., Kékicheff, P., and Podgornik, R. (eds.), Electrostatic Effects in Soft Matter and Biophysics, vol. 46 of NATO Science Series II – Mathematics, Physics and Chemistry. Kluwer Academic Publishers, Dordrecht, Netherlands.

    Google Scholar 

  9. Jönsson, B. and Wennerström, H. (2001) In Holm, C., Kékicheff, P., and Podgornik, R. (eds.), Electrostatic Effects in Soft Matter and Biophysics, vol. 46 of NATO Science Series II – Mathematics, Physics and Chemistry. Kluwer Academic Publishers, Dordrecht, Netherlands.

    Google Scholar 

  10. Debye, P. and Hückel, E. (1923) Phys. Z., 24, 185.

    MATH  Google Scholar 

  11. Hill, T.L. (1960) Statistical Mechanics. Addison-Wesley, Reading, MA.

    Google Scholar 

  12. McQuarrie, D.A. (1976) Statistical Mechanics. Harper’s chemistry series. Harper Collins, New York.

    Google Scholar 

  13. Kjellander, R. (2001) In Holm, C., Kékicheff, P., and Podgornik, R. (eds.), Electrostatic Effects in Soft Matter and Biophysics, vol. 46 of NATO Science Series II – Mathematics, Physics and Chemistry. Kluwer Academic Publishers, Dordrecht, Netherlands.

    Google Scholar 

  14. Andelman, D. (1995) In Lipowsky, R. and Sackmann, E. (eds.), Handbook of Biological Physics, vol. I chap. 12. Elsevier, Amsterdam.

    Google Scholar 

  15. Deserno, M. (2001) Eur. Phys. J. E, 6, 163.

    Article  Google Scholar 

  16. Moreira, A.G. and Netz, R.R. (2001) In Holm, C., Kékicheff, P., and Podgornik, R. (eds.), Electrostatic Effects in Soft Matter and Biophysics, vol. 46 of NATO Science Series II – Mathematics, Physics and Chemistry. Kluwer Academic Publishers, Dordrecht, Netherlands.

    Google Scholar 

  17. Fuoss, R.M., Katchalsky, A., and Lifson, S. (1951) Proc. Natl. Acad. Sci. USA, 37, 579.

    Article  ADS  MATH  Google Scholar 

  18. Alfrey, T., Berg, P.W., and Morawetz, H.J. (1951) J. Polym. Sci., 7, 543.

    Article  ADS  Google Scholar 

  19. Manning, G. (1969) J. Chem. Phys., 51, 924.

    Article  ADS  Google Scholar 

  20. Oosawa, F. (1971) Polyelectrolytes. Marcel Dekker, New York.

    Google Scholar 

  21. Le Bret, M. and Zimm, B. (1984) Biopolymers, 23, 271.

    Article  Google Scholar 

  22. Deserno, M., Holm, C., and May, S. (2000) Macromolecules, 33, 199.

    Article  ADS  Google Scholar 

  23. Belloni, L., Drifford, M., and Turq, P. (1984) Chem. Phys., 83, 147.

    Article  Google Scholar 

  24. Belloni, L. (1998) Colloids Sur, A 140, 227.

    Article  Google Scholar 

  25. Le Bret, M. and Zimm, B. (1984) Biopolymers, 23, 287.

    Article  Google Scholar 

  26. Wennerström, H., Jönsson, B., and Linse, P. (1982) J. Chem. Phys., 76, 4665.

    Article  ADS  Google Scholar 

  27. Alexander, S., Chaikin, P.M., Grant, P., Morales, G.J., Pincus, P., and Hone, D. (1984) J. Chem. Phys., 80, 5776.

    Article  ADS  Google Scholar 

  28. Raspaud, E., da Conceicao, M., and Livolant, F. (2000) Phys. Rev. Lett., 84, 2533.

    Article  ADS  Google Scholar 

  29. Gouy, G.L. (1910) J. de Phys., 9, 457.

    MATH  Google Scholar 

  30. Deserno, M., Holm, C., and Kremer, K. (2001) Molecular Dynamics Simulations of the Cylindrical Cell Model, vol. 99 of Surfactant science series, chap. 2. Marcel Decker, New York, pp. 59–110.

    Google Scholar 

  31. Deserno, M. and Holm, C. (2002) Mol. Phys., 100, 2941.

    Article  ADS  Google Scholar 

  32. Naji, A., Arnold, A., Holm, C., and Netz, R.R. (2004) Europhys. Lett., 67, 130.

    Article  ADS  Google Scholar 

  33. Barbosa, M.C., Deserno, M., and Holm, C. (2000) Europhys. Lett., 52, 80.

    Article  ADS  Google Scholar 

  34. Nordholm, S. (1984) Chem. Phys. Lett., 105, 302.

    Article  ADS  Google Scholar 

  35. Baus, M. and Hansen, J.-P. (1980) Phys. Rep., 59, 1.

    Article  MathSciNet  ADS  Google Scholar 

  36. Penfold, R., Nordholm, S., Jönsson, B., and Woodward, C.E. (1990) J. Chem. Phys., 92, 1915.

    Article  ADS  Google Scholar 

  37. Groot, R.D. (1991) J. Chem. Phys., 95, 9191.

    Article  ADS  Google Scholar 

  38. Deserno, M. (2000) Physica A, 278, 405.

    Article  ADS  Google Scholar 

  39. Barbosa, M.C., Deserno, M., Holm, C., and Messina, R. (2004) Phys. Rev. E, 69, 051401.

    Article  ADS  Google Scholar 

  40. Antypov, D., Barbosa, M., and Holm, C. (2005) Phys. Rev. E, 71, 061106.

    Article  ADS  Google Scholar 

  41. Borukhov, I., Andelman, D., and Orland, H. (1997) Phys. Rev. Lett., 79, 435.

    Article  ADS  Google Scholar 

  42. Deserno, M. (2000) Ph.D. thesis, Universität Mainz, URL http://archimed.uni-mainz.de/pub/2000/0018.

  43. Blaul, J., Wittemann, M., Ballauff, M., and Rehahn, M. (2000) J. Phys. Chem. B, 104, 7077.

    Article  Google Scholar 

  44. Deserno, M., Holm, C., Blaul, J., Ballauff, M., and Rehahn, M. (2001) Eur. Phys. J. E, 5, 97.

    Article  Google Scholar 

  45. Rouzina, I. and Bloomfield, V. (1996) J. Phys. Chem., 100, 9977.

    Article  Google Scholar 

  46. Oosawa, F. (1968) Biopolymers, 6, 1633.

    Article  Google Scholar 

  47. Moreira, A.G. and Netz, R.R. (2001) Phys. Rev. Lett., 87, 078301.

    Article  ADS  Google Scholar 

  48. Gonzales-Tovar, E., Lozada-Cassou, M., and Henderson, D. (1985) J. Chem. Phys., 83, 361.

    Article  ADS  Google Scholar 

  49. Deserno, M., Arnold, A., and Holm, C. (2003) Macromolecules, 36, 249, cond-mat/0206126.

    Article  ADS  Google Scholar 

  50. Arnold, A. and Holm, C. (2008) J.Chem. Phys., in Press.

    Google Scholar 

  51. Naji, A. and Netz, R. (2004) Eur. Phys. J. E, 13, 43.

    Article  Google Scholar 

  52. Deserno, M., Jiménez-ángeles, F., Holm, C., and Lozada-Cassou, M. (2001c) J. Phys. Chem. B, 105, 10983.

    Article  Google Scholar 

  53. González-Mozuelos, P. and de la Cruz, M.O. (1995) J. Chem. Phys., 103, 3145.

    Article  ADS  Google Scholar 

  54. Nyquist, R.M., Ha, B., and Liu, A.J. (1999) Macromolecules, 32, 3481.

    Article  ADS  Google Scholar 

  55. Shew, C. and Yethiraj, A. (1999) J. Chem. Phys., 110, 11599.

    Article  ADS  Google Scholar 

  56. Hofmann, T., Winkler, R., and Reineker, P. (2001) J. Chem. Phys., 114, 10181.

    Article  ADS  Google Scholar 

  57. Deshkovski, A., Obukhov, S., and Rubinstein, M. (2001) Phys. Rev. Lett., 86, 2341.

    Article  ADS  Google Scholar 

  58. Antypov, D. and Holm, C. (2006) Phys. Rev. Lett., 96, 088302.

    Article  ADS  Google Scholar 

  59. Trizac, E. and Hansen, J.-P. (1997) Phys. Rev. E, 56, 3137.

    Article  ADS  Google Scholar 

  60. Liao, Q., Dobrynin, V., and Rubinstein, M. (2003) Macromolecules, 36, 3399.

    Article  ADS  Google Scholar 

  61. Arnold, A. and Holm, C. (2005) J. Chem. Phys., 123, 144103.

    Article  ADS  Google Scholar 

  62. Limbach, H.-J., Arnold, A., Mann, B.A., and Holm, C. (2006) Comp. Phys. Comm., 174, 704.

    Article  ADS  Google Scholar 

  63. Antypov, D. and Holm, C. (2007) Macromolecules, 40, 731.

    Article  ADS  Google Scholar 

  64. Stevens, M.J. and Kremer, K. (1995) J. Chem. Phys., 103, 1669.

    Article  ADS  Google Scholar 

  65. Stevens, M.J. and Kremer, K. (1993) Macromolecules, 26, 4717.

    Article  ADS  Google Scholar 

  66. Stevens, M.J. and Kremer, K. (1996) J. Phys. II, 6, 1607.

    Google Scholar 

  67. Holm, C. and Kremer, K. (1999) In Noda, I. and Kokufuta, E. (eds.), Proceedings of Yamada Conference “Polyelectrolytes”, Inuyama, Japan. Yamada Science Foundation, Osaka, Japan, pp. 27–36.

    Google Scholar 

  68. de Gennes, P. (1979) Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca, NY.

    Google Scholar 

  69. Halperin, A. and Zhulina, E.B. (1991) Macromolecules, 24, 5393.

    Article  ADS  Google Scholar 

  70. Khokhlov, A. (1980) J. Phys. A, 13, 979.

    Article  ADS  Google Scholar 

  71. Dobrynin, A.V., Rubinstein, M., and Obukhov, S.P. (1996) Macromolecules, 29, 2974.

    Article  ADS  Google Scholar 

  72. Rayleigh, L. (1882) Philos. Mag., 14, 182.

    Google Scholar 

  73. Kantor, Y. and Kardar, M. (1994) Europhys. Lett., 27, 643.

    Article  ADS  Google Scholar 

  74. Kantor, Y. and Kardar, M. (1995) Phys. Rev. E, 51, 1299.

    Article  ADS  Google Scholar 

  75. Lyulin, A.V., Dünweg, B., Borisov, O.V., and Darinskii, A.A. (1999) Macromolecules, 32, 3264.

    Article  ADS  Google Scholar 

  76. Chodanowski, P. and Stoll, S. (1999) J. Chem. Phys., 111, 6069.

    Article  ADS  Google Scholar 

  77. Micka, U., Holm, C., and Kremer, K. (1999) Langmuir, 15, 4033.

    Article  Google Scholar 

  78. Limbach, H.J. and Holm, C. (2002) Comp. Phys. Comp., 147, 321.

    Article  ADS  MATH  Google Scholar 

  79. Limbach, H.J. (2001) Ph.D. thesis, Johannes Gutenberg–Universität, Mainz, Germany, URL http://archimed.uni-mainz.de/pub/2002/0121/.

  80. Limbach, H.J. and Holm, C. (2003) J. Phys. Chem. B, 107, 8041.

    Article  Google Scholar 

  81. Limbach, H.J., Holm, C., and Kremer, K. (2002) Europhys. Lett., 60, 566.

    Article  ADS  Google Scholar 

  82. Schiessel, H. and Pincus, P. (1998) Macromolecules, 31, 7953.

    Article  ADS  Google Scholar 

  83. Vilgis, T.A., Johner, A., and Joanny, J.-F. (2000) Eur. Phys. J. E, 2, 289.

    Article  Google Scholar 

  84. Khan, M., Mel’nikov, S., and Jönsson, B. (1999) Macromolecules, 32, 8836.

    Article  ADS  Google Scholar 

  85. Dobrynin, A.V. and Rubinstein, M. (1999) Macromolecules, 32, 915.

    Article  ADS  Google Scholar 

  86. Holm, C., Limbach, H.J., and Kremer, K. (2003) J. Phys. Condens. Matter, 15, S205.

    Article  ADS  Google Scholar 

  87. Liao, Q., Dobrynin, V., and Rubinstein, M. (2006) Macromolecules, 39, 1920.

    Article  ADS  Google Scholar 

  88. Heitz, C., Rawiso, M., and François, J. (1999) Polymer, 40, 1637.

    Article  Google Scholar 

  89. Schweins, R. and Huber, K. (2004) Macromolecular Symposia, 211, 25.

    Google Scholar 

  90. Nierlich, M., Williams, C., Boue, F., Cotton, J., Daoud, M., Garnoux, B., Jannink, G., Picot, C., Moan, M., Wolff, C., et al. (1979) J. Physique, 40, 701.

    Article  Google Scholar 

  91. Joanny, J.F. (2001) In Holm, C., Kékicheff, P., and Podgornik, R. (eds.), Electrostatic Effects in Soft Matter and Biophysics, vol. 46 of NATO Science Series II – Mathematics, Physics and Chemistry. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 149–170.

    Chapter  Google Scholar 

  92. Essafi, W., Lafuma, F., and Williams, C.E. (1995) J. Phys. II, 5, 1269.

    Article  Google Scholar 

  93. Waigh, T.A., Ober, R., Williams, C.E., and Galin, J.-C. (2001) Macromolecules, 34, 1973.

    Article  ADS  Google Scholar 

  94. Baigl, D., Ober, R., Qu, D., Fery, A., and Williams, C.E. (2003) Europhys. Lett., 63, 588.

    Article  ADS  Google Scholar 

  95. Hugel, T., Grosholz, M., Clausen-Schaumann, H., Pfau, A., Gaub, H., and Seitz, M. (2001) Macromolecules, 4, 1039.

    Article  ADS  Google Scholar 

  96. Tamashiro, M.N. and Schiessel, H. (2000) Macromolecules, 33, 5263.

    Article  ADS  Google Scholar 

  97. Pickett, G.T. and Balazs, A.C. (2001) Langmuir, 17, 5111.

    Article  Google Scholar 

  98. Khokhlov, A., Starodubtzev, S.G., and Vasilevskaya, V.V. (1993) In Dusek, K. (ed.), Conformational transitions in polymer gels: theory and experiment, vol. 109 of Adv. Polym. Sci. Springer, New York, p. 123.

    Google Scholar 

  99. Kuhn, W., Hargitay, B., Katchalsky, A., and Eisenberg, H. (1950) Nature, 165, 514.

    Article  ADS  Google Scholar 

  100. Tanaka, T. (1978) Phys. Rev. Lett., 40, 820.

    Article  ADS  Google Scholar 

  101. Dusek, K. (1993) In Advances in Polymer Sciences, vols 109 and 110. Springer, New York.

    Google Scholar 

  102. Katchalsky, A. and Michaeli, I. (1955) J. Polym. Sci., 15, 69.

    Article  ADS  Google Scholar 

  103. Michaeli, I. and Katchalsky, A. (1957) J. Polym. Sci., 23, 683.

    Article  ADS  Google Scholar 

  104. Hansson, P. (1998) Langmuir, 14, 2269.

    Article  Google Scholar 

  105. Ashbaugh, H.S., Piculell, L., and Lindman, B. (2000) Langmuir, 16, 2529.

    Article  Google Scholar 

  106. Sjöström, J. and Piculell, L. (2001) Colloids Surf. A, 183185, 429.

    Google Scholar 

  107. Hansson, P., Schneider, S., and Lindman, B. (2000) Prog. Colloid Polym. Sci., 115, 342.

    Article  Google Scholar 

  108. Hansson, P., Schneider, S., and Lindman, B. (2002) J. Phys. Chem. B, 106, 9777.

    Article  Google Scholar 

  109. Fernandez-Nieves, A., Fernandez-Barbero, A., Vincent, B., and de las Nieves, F.J. (2000) Macromolecules, 33, 2114.

    Article  ADS  Google Scholar 

  110. Fernandez-Nieves, A., Fernandez-Barbero, A., Vincent, B., and de las Nieves, F.J. (2000) Prog. Colloid Polym. Sci., 115, 134.

    Article  Google Scholar 

  111. Barrat, J.-L., Joanny, J.-F., and Pincus, P. (1992) J. Phys. II France, 2, 1531.

    Article  Google Scholar 

  112. Vilgis, T.A., Johner, A., and Joanny, J.-F. (2000) Eur. Phys. J. E, 3, 237.

    Article  Google Scholar 

  113. Khokhlov, A., Zeldovich, K., and Kramarenko, E. (2001) In Holm, C., Kékicheff, P., and Podgornik, R. (eds.), Electrostatic Effects in Soft Matter and Biophysics, vol. 46 of NATO Science Series II – Mathematics, Physics and Chemistry. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 283–317.

    Chapter  Google Scholar 

  114. Schneider, S. and Linse, P. (2002) Eur. Phys. J. E, 8, 457.

    Google Scholar 

  115. Lu, Z.-Y. and Hentschke, R. (2003) Phys. Rev. E, 67, 061807.

    Article  ADS  Google Scholar 

  116. Yan, Q. and de Pablo, J.J. (2003) Phys. Rev. Lett., 91, 018301.

    Article  ADS  Google Scholar 

  117. Schneider, S. and Linse, P. (2003) J. Phys. Chem. B, 107, 8030.

    Article  Google Scholar 

  118. Mann, B.A., Everaers, R., Holm, C., and Kremer, K. (2004) Europhys. Lett., 67, 786.

    Article  ADS  Google Scholar 

  119. Mann, B.A., Holm, C., and Kremer, K. (2005) J. Chem. Phys., 122, 154903.

    Article  ADS  Google Scholar 

  120. Mann, B.A., Holm, C., and Kremer, K. (2005) Macromolecular Symposia (2006), 237, 90.

    Google Scholar 

Download references

Acknowledgments

I gratefully acknowledge the contributions of my coworkers D. Antypov, A. Arnold, M. Barbosa, M. Deserno, K. Kremer, H. J. Limbach, and B. A. Mann to this review. This work has been supported partially by German Science Foundation (DFG) through SFB 625, TR6 and Ho-1108/11-1, a DAAD-Probal contract.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this entry

Cite this entry

Holm*, C. (2008). Polyelectrolytes-Theory and Simulations. In: Borsali, R., Pecora, R. (eds) Soft Matter Characterization. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4465-6_6

Download citation

Publish with us

Policies and ethics