Advertisement

Polyelectrolytes-Theory and Simulations

  • C. Holm*

1 Introduction

Polyelectrolytes are polymers that have the ability to dissociate charges in polar solvents, which result in charged polymer chains (macroion) and mobile counterions. They represent a broad and interesting class of soft matter [1], which enjoys an increasing attention in the scientific community. For example, in technical applications polyelectrolytes are used as viscosity modifiers to reduce drag in oil pipelines, or to make low-fat dairy products creamy. They are used in sewage plants to clean water by precipitating heavy metal ions. They are also responsible for the ability of sanitary napkins or baby-diapers to absorb enormous amounts of water, and are hence called superabsorbers.

A thorough understanding of charged soft matter has become of great interest also in biochemistry and molecular biology. This is due to the fact that virtually all proteins, as well as other biopolymer, such as DNA, actin, or microtubules are polyelectrolytes. Moreover, the cell membrane is...

Keywords

Osmotic Coefficient Polyelectrolyte Solution Counterion Condensation Bjerrum Length Boltzmann Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

I gratefully acknowledge the contributions of my coworkers D. Antypov, A. Arnold, M. Barbosa, M. Deserno, K. Kremer, H. J. Limbach, and B. A. Mann to this review. This work has been supported partially by German Science Foundation (DFG) through SFB 625, TR6 and Ho-1108/11-1, a DAAD-Probal contract.

References

  1. 1.
    Hara, M. (1993) Polyelectrolytes: Science and Technology. Marcel Dekker, New York.Google Scholar
  2. 2.
    Holm, C., Kékicheff, P., and Podgornik, R. (2001) Electrostatic Effects in Soft Matter and Biophysics, vol. 46 of NATO Science Series II – Mathematics, Physics and Chemistry. Kluwer Academic Publishers, Dordrecht, Netherlands.Google Scholar
  3. 3.
    Netz, R.R. and Andelman, D. (2003) Phys. Rep., 380, 1.ADSMATHCrossRefGoogle Scholar
  4. 4.
    Boroudjerdi, H., Kim, Y.-W., Naji, A., Netz, R.R., Schlagberger, X., and Serr, A. (2005) Phys. Rep., 416, 129.ADSCrossRefGoogle Scholar
  5. 5.
    Naji, A., Jungblut, S., Moreira, A.G, and Netz, R.R. (2005) Physica A, 352, 131.ADSCrossRefGoogle Scholar
  6. 6.
    Barrat, J.-L. and Joanny, J.-F. (1996) Adv. Chem. Phys., 94, 1.CrossRefGoogle Scholar
  7. 7.
    Katchalsky, A. (1971) Pure Appl. Chem., 26, 327.CrossRefGoogle Scholar
  8. 8.
    Deserno, M. and Holm, C. (2001) In Holm, C., Kékicheff, P., and Podgornik, R. (eds.), Electrostatic Effects in Soft Matter and Biophysics, vol. 46 of NATO Science Series II – Mathematics, Physics and Chemistry. Kluwer Academic Publishers, Dordrecht, Netherlands.Google Scholar
  9. 9.
    Jönsson, B. and Wennerström, H. (2001) In Holm, C., Kékicheff, P., and Podgornik, R. (eds.), Electrostatic Effects in Soft Matter and Biophysics, vol. 46 of NATO Science Series II – Mathematics, Physics and Chemistry. Kluwer Academic Publishers, Dordrecht, Netherlands.Google Scholar
  10. 10.
    Debye, P. and Hückel, E. (1923) Phys. Z., 24, 185.MATHGoogle Scholar
  11. 11.
    Hill, T.L. (1960) Statistical Mechanics. Addison-Wesley, Reading, MA.Google Scholar
  12. 12.
    McQuarrie, D.A. (1976) Statistical Mechanics. Harper’s chemistry series. Harper Collins, New York.Google Scholar
  13. 13.
    Kjellander, R. (2001) In Holm, C., Kékicheff, P., and Podgornik, R. (eds.), Electrostatic Effects in Soft Matter and Biophysics, vol. 46 of NATO Science Series II – Mathematics, Physics and Chemistry. Kluwer Academic Publishers, Dordrecht, Netherlands.Google Scholar
  14. 14.
    Andelman, D. (1995) In Lipowsky, R. and Sackmann, E. (eds.), Handbook of Biological Physics, vol. I chap. 12. Elsevier, Amsterdam.Google Scholar
  15. 15.
    Deserno, M. (2001) Eur. Phys. J. E, 6, 163.CrossRefGoogle Scholar
  16. 16.
    Moreira, A.G. and Netz, R.R. (2001) In Holm, C., Kékicheff, P., and Podgornik, R. (eds.), Electrostatic Effects in Soft Matter and Biophysics, vol. 46 of NATO Science Series II – Mathematics, Physics and Chemistry. Kluwer Academic Publishers, Dordrecht, Netherlands.Google Scholar
  17. 17.
    Fuoss, R.M., Katchalsky, A., and Lifson, S. (1951) Proc. Natl. Acad. Sci. USA, 37, 579.ADSMATHCrossRefGoogle Scholar
  18. 18.
    Alfrey, T., Berg, P.W., and Morawetz, H.J. (1951) J. Polym. Sci., 7, 543.ADSCrossRefGoogle Scholar
  19. 19.
    Manning, G. (1969) J. Chem. Phys., 51, 924.ADSCrossRefGoogle Scholar
  20. 20.
    Oosawa, F. (1971) Polyelectrolytes. Marcel Dekker, New York.Google Scholar
  21. 21.
    Le Bret, M. and Zimm, B. (1984) Biopolymers, 23, 271.CrossRefGoogle Scholar
  22. 22.
    Deserno, M., Holm, C., and May, S. (2000) Macromolecules, 33, 199.ADSCrossRefGoogle Scholar
  23. 23.
    Belloni, L., Drifford, M., and Turq, P. (1984) Chem. Phys., 83, 147.CrossRefGoogle Scholar
  24. 24.
    Belloni, L. (1998) Colloids Sur, A 140, 227.CrossRefGoogle Scholar
  25. 25.
    Le Bret, M. and Zimm, B. (1984) Biopolymers, 23, 287.CrossRefGoogle Scholar
  26. 26.
    Wennerström, H., Jönsson, B., and Linse, P. (1982) J. Chem. Phys., 76, 4665.ADSCrossRefGoogle Scholar
  27. 27.
    Alexander, S., Chaikin, P.M., Grant, P., Morales, G.J., Pincus, P., and Hone, D. (1984) J. Chem. Phys., 80, 5776.ADSCrossRefGoogle Scholar
  28. 28.
    Raspaud, E., da Conceicao, M., and Livolant, F. (2000) Phys. Rev. Lett., 84, 2533.ADSCrossRefGoogle Scholar
  29. 29.
    Gouy, G.L. (1910) J. de Phys., 9, 457.MATHGoogle Scholar
  30. 30.
    Deserno, M., Holm, C., and Kremer, K. (2001) Molecular Dynamics Simulations of the Cylindrical Cell Model, vol. 99 of Surfactant science series, chap. 2. Marcel Decker, New York, pp. 59–110.Google Scholar
  31. 31.
    Deserno, M. and Holm, C. (2002) Mol. Phys., 100, 2941.ADSCrossRefGoogle Scholar
  32. 32.
    Naji, A., Arnold, A., Holm, C., and Netz, R.R. (2004) Europhys. Lett., 67, 130.ADSCrossRefGoogle Scholar
  33. 33.
    Barbosa, M.C., Deserno, M., and Holm, C. (2000) Europhys. Lett., 52, 80.ADSCrossRefGoogle Scholar
  34. 34.
    Nordholm, S. (1984) Chem. Phys. Lett., 105, 302.ADSCrossRefGoogle Scholar
  35. 35.
    Baus, M. and Hansen, J.-P. (1980) Phys. Rep., 59, 1.MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    Penfold, R., Nordholm, S., Jönsson, B., and Woodward, C.E. (1990) J. Chem. Phys., 92, 1915.ADSCrossRefGoogle Scholar
  37. 37.
    Groot, R.D. (1991) J. Chem. Phys., 95, 9191.ADSCrossRefGoogle Scholar
  38. 38.
    Deserno, M. (2000) Physica A, 278, 405.ADSCrossRefGoogle Scholar
  39. 39.
    Barbosa, M.C., Deserno, M., Holm, C., and Messina, R. (2004) Phys. Rev. E, 69, 051401.ADSCrossRefGoogle Scholar
  40. 40.
    Antypov, D., Barbosa, M., and Holm, C. (2005) Phys. Rev. E, 71, 061106.ADSCrossRefGoogle Scholar
  41. 41.
    Borukhov, I., Andelman, D., and Orland, H. (1997) Phys. Rev. Lett., 79, 435.ADSCrossRefGoogle Scholar
  42. 42.
    Deserno, M. (2000) Ph.D. thesis, Universität Mainz, URL http://archimed.uni-mainz.de/pub/2000/0018.
  43. 43.
    Blaul, J., Wittemann, M., Ballauff, M., and Rehahn, M. (2000) J. Phys. Chem. B, 104, 7077.CrossRefGoogle Scholar
  44. 44.
    Deserno, M., Holm, C., Blaul, J., Ballauff, M., and Rehahn, M. (2001) Eur. Phys. J. E, 5, 97.CrossRefGoogle Scholar
  45. 45.
    Rouzina, I. and Bloomfield, V. (1996) J. Phys. Chem., 100, 9977.CrossRefGoogle Scholar
  46. 46.
    Oosawa, F. (1968) Biopolymers, 6, 1633.CrossRefGoogle Scholar
  47. 47.
    Moreira, A.G. and Netz, R.R. (2001) Phys. Rev. Lett., 87, 078301.ADSCrossRefGoogle Scholar
  48. 48.
    Gonzales-Tovar, E., Lozada-Cassou, M., and Henderson, D. (1985) J. Chem. Phys., 83, 361.ADSCrossRefGoogle Scholar
  49. 49.
    Deserno, M., Arnold, A., and Holm, C. (2003) Macromolecules, 36, 249, cond-mat/0206126.ADSCrossRefGoogle Scholar
  50. 50.
    Arnold, A. and Holm, C. (2008) J.Chem. Phys., in Press.Google Scholar
  51. 51.
    Naji, A. and Netz, R. (2004) Eur. Phys. J. E, 13, 43.CrossRefGoogle Scholar
  52. 52.
    Deserno, M., Jiménez-ángeles, F., Holm, C., and Lozada-Cassou, M. (2001c) J. Phys. Chem. B, 105, 10983.CrossRefGoogle Scholar
  53. 53.
    González-Mozuelos, P. and de la Cruz, M.O. (1995) J. Chem. Phys., 103, 3145.ADSCrossRefGoogle Scholar
  54. 54.
    Nyquist, R.M., Ha, B., and Liu, A.J. (1999) Macromolecules, 32, 3481.ADSCrossRefGoogle Scholar
  55. 55.
    Shew, C. and Yethiraj, A. (1999) J. Chem. Phys., 110, 11599.ADSCrossRefGoogle Scholar
  56. 56.
    Hofmann, T., Winkler, R., and Reineker, P. (2001) J. Chem. Phys., 114, 10181.ADSCrossRefGoogle Scholar
  57. 57.
    Deshkovski, A., Obukhov, S., and Rubinstein, M. (2001) Phys. Rev. Lett., 86, 2341.ADSCrossRefGoogle Scholar
  58. 58.
    Antypov, D. and Holm, C. (2006) Phys. Rev. Lett., 96, 088302.ADSCrossRefGoogle Scholar
  59. 59.
    Trizac, E. and Hansen, J.-P. (1997) Phys. Rev. E, 56, 3137.ADSCrossRefGoogle Scholar
  60. 60.
    Liao, Q., Dobrynin, V., and Rubinstein, M. (2003) Macromolecules, 36, 3399.ADSCrossRefGoogle Scholar
  61. 61.
    Arnold, A. and Holm, C. (2005) J. Chem. Phys., 123, 144103.ADSCrossRefGoogle Scholar
  62. 62.
    Limbach, H.-J., Arnold, A., Mann, B.A., and Holm, C. (2006) Comp. Phys. Comm., 174, 704.ADSCrossRefGoogle Scholar
  63. 63.
    Antypov, D. and Holm, C. (2007) Macromolecules, 40, 731.ADSCrossRefGoogle Scholar
  64. 64.
    Stevens, M.J. and Kremer, K. (1995) J. Chem. Phys., 103, 1669.ADSCrossRefGoogle Scholar
  65. 65.
    Stevens, M.J. and Kremer, K. (1993) Macromolecules, 26, 4717.ADSCrossRefGoogle Scholar
  66. 66.
    Stevens, M.J. and Kremer, K. (1996) J. Phys. II, 6, 1607.Google Scholar
  67. 67.
    Holm, C. and Kremer, K. (1999) In Noda, I. and Kokufuta, E. (eds.), Proceedings of Yamada Conference “Polyelectrolytes”, Inuyama, Japan. Yamada Science Foundation, Osaka, Japan, pp. 27–36.Google Scholar
  68. 68.
    de Gennes, P. (1979) Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca, NY.Google Scholar
  69. 69.
    Halperin, A. and Zhulina, E.B. (1991) Macromolecules, 24, 5393.ADSCrossRefGoogle Scholar
  70. 70.
    Khokhlov, A. (1980) J. Phys. A, 13, 979.ADSCrossRefGoogle Scholar
  71. 71.
    Dobrynin, A.V., Rubinstein, M., and Obukhov, S.P. (1996) Macromolecules, 29, 2974.ADSCrossRefGoogle Scholar
  72. 72.
    Rayleigh, L. (1882) Philos. Mag., 14, 182.Google Scholar
  73. 73.
    Kantor, Y. and Kardar, M. (1994) Europhys. Lett., 27, 643.ADSCrossRefGoogle Scholar
  74. 74.
    Kantor, Y. and Kardar, M. (1995) Phys. Rev. E, 51, 1299.ADSCrossRefGoogle Scholar
  75. 75.
    Lyulin, A.V., Dünweg, B., Borisov, O.V., and Darinskii, A.A. (1999) Macromolecules, 32, 3264.ADSCrossRefGoogle Scholar
  76. 76.
    Chodanowski, P. and Stoll, S. (1999) J. Chem. Phys., 111, 6069.ADSCrossRefGoogle Scholar
  77. 77.
    Micka, U., Holm, C., and Kremer, K. (1999) Langmuir, 15, 4033.CrossRefGoogle Scholar
  78. 78.
    Limbach, H.J. and Holm, C. (2002) Comp. Phys. Comp., 147, 321.ADSMATHCrossRefGoogle Scholar
  79. 79.
    Limbach, H.J. (2001) Ph.D. thesis, Johannes Gutenberg–Universität, Mainz, Germany, URL http://archimed.uni-mainz.de/pub/2002/0121/.
  80. 80.
    Limbach, H.J. and Holm, C. (2003) J. Phys. Chem. B, 107, 8041.CrossRefGoogle Scholar
  81. 81.
    Limbach, H.J., Holm, C., and Kremer, K. (2002) Europhys. Lett., 60, 566.ADSCrossRefGoogle Scholar
  82. 82.
    Schiessel, H. and Pincus, P. (1998) Macromolecules, 31, 7953.ADSCrossRefGoogle Scholar
  83. 83.
    Vilgis, T.A., Johner, A., and Joanny, J.-F. (2000) Eur. Phys. J. E, 2, 289.CrossRefGoogle Scholar
  84. 84.
    Khan, M., Mel’nikov, S., and Jönsson, B. (1999) Macromolecules, 32, 8836.ADSCrossRefGoogle Scholar
  85. 85.
    Dobrynin, A.V. and Rubinstein, M. (1999) Macromolecules, 32, 915.ADSCrossRefGoogle Scholar
  86. 86.
    Holm, C., Limbach, H.J., and Kremer, K. (2003) J. Phys. Condens. Matter, 15, S205.ADSCrossRefGoogle Scholar
  87. 87.
    Liao, Q., Dobrynin, V., and Rubinstein, M. (2006) Macromolecules, 39, 1920.ADSCrossRefGoogle Scholar
  88. 88.
    Heitz, C., Rawiso, M., and François, J. (1999) Polymer, 40, 1637.CrossRefGoogle Scholar
  89. 89.
    Schweins, R. and Huber, K. (2004) Macromolecular Symposia, 211, 25.Google Scholar
  90. 90.
    Nierlich, M., Williams, C., Boue, F., Cotton, J., Daoud, M., Garnoux, B., Jannink, G., Picot, C., Moan, M., Wolff, C., et al. (1979) J. Physique, 40, 701.CrossRefGoogle Scholar
  91. 91.
    Joanny, J.F. (2001) In Holm, C., Kékicheff, P., and Podgornik, R. (eds.), Electrostatic Effects in Soft Matter and Biophysics, vol. 46 of NATO Science Series II – Mathematics, Physics and Chemistry. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 149–170.CrossRefGoogle Scholar
  92. 92.
    Essafi, W., Lafuma, F., and Williams, C.E. (1995) J. Phys. II, 5, 1269.CrossRefGoogle Scholar
  93. 93.
    Waigh, T.A., Ober, R., Williams, C.E., and Galin, J.-C. (2001) Macromolecules, 34, 1973.ADSCrossRefGoogle Scholar
  94. 94.
    Baigl, D., Ober, R., Qu, D., Fery, A., and Williams, C.E. (2003) Europhys. Lett., 63, 588.ADSCrossRefGoogle Scholar
  95. 95.
    Hugel, T., Grosholz, M., Clausen-Schaumann, H., Pfau, A., Gaub, H., and Seitz, M. (2001) Macromolecules, 4, 1039.ADSCrossRefGoogle Scholar
  96. 96.
    Tamashiro, M.N. and Schiessel, H. (2000) Macromolecules, 33, 5263.ADSCrossRefGoogle Scholar
  97. 97.
    Pickett, G.T. and Balazs, A.C. (2001) Langmuir, 17, 5111.CrossRefGoogle Scholar
  98. 98.
    Khokhlov, A., Starodubtzev, S.G., and Vasilevskaya, V.V. (1993) In Dusek, K. (ed.), Conformational transitions in polymer gels: theory and experiment, vol. 109 of Adv. Polym. Sci. Springer, New York, p. 123.Google Scholar
  99. 99.
    Kuhn, W., Hargitay, B., Katchalsky, A., and Eisenberg, H. (1950) Nature, 165, 514.ADSCrossRefGoogle Scholar
  100. 100.
    Tanaka, T. (1978) Phys. Rev. Lett., 40, 820.ADSCrossRefGoogle Scholar
  101. 101.
    Dusek, K. (1993) In Advances in Polymer Sciences, vols 109 and 110. Springer, New York.Google Scholar
  102. 102.
    Katchalsky, A. and Michaeli, I. (1955) J. Polym. Sci., 15, 69.ADSCrossRefGoogle Scholar
  103. 103.
    Michaeli, I. and Katchalsky, A. (1957) J. Polym. Sci., 23, 683.ADSCrossRefGoogle Scholar
  104. 104.
    Hansson, P. (1998) Langmuir, 14, 2269.CrossRefGoogle Scholar
  105. 105.
    Ashbaugh, H.S., Piculell, L., and Lindman, B. (2000) Langmuir, 16, 2529.CrossRefGoogle Scholar
  106. 106.
    Sjöström, J. and Piculell, L. (2001) Colloids Surf. A, 183185, 429. Google Scholar
  107. 107.
    Hansson, P., Schneider, S., and Lindman, B. (2000) Prog. Colloid Polym. Sci., 115, 342.CrossRefGoogle Scholar
  108. 108.
    Hansson, P., Schneider, S., and Lindman, B. (2002) J. Phys. Chem. B, 106, 9777.CrossRefGoogle Scholar
  109. 109.
    Fernandez-Nieves, A., Fernandez-Barbero, A., Vincent, B., and de las Nieves, F.J. (2000) Macromolecules, 33, 2114.ADSCrossRefGoogle Scholar
  110. 110.
    Fernandez-Nieves, A., Fernandez-Barbero, A., Vincent, B., and de las Nieves, F.J. (2000) Prog. Colloid Polym. Sci., 115, 134.CrossRefGoogle Scholar
  111. 111.
    Barrat, J.-L., Joanny, J.-F., and Pincus, P. (1992) J. Phys. II France, 2, 1531.CrossRefGoogle Scholar
  112. 112.
    Vilgis, T.A., Johner, A., and Joanny, J.-F. (2000) Eur. Phys. J. E, 3, 237.CrossRefGoogle Scholar
  113. 113.
    Khokhlov, A., Zeldovich, K., and Kramarenko, E. (2001) In Holm, C., Kékicheff, P., and Podgornik, R. (eds.), Electrostatic Effects in Soft Matter and Biophysics, vol. 46 of NATO Science Series II – Mathematics, Physics and Chemistry. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 283–317.CrossRefGoogle Scholar
  114. 114.
    Schneider, S. and Linse, P. (2002) Eur. Phys. J. E, 8, 457.Google Scholar
  115. 115.
    Lu, Z.-Y. and Hentschke, R. (2003) Phys. Rev. E, 67, 061807.ADSCrossRefGoogle Scholar
  116. 116.
    Yan, Q. and de Pablo, J.J. (2003) Phys. Rev. Lett., 91, 018301.ADSCrossRefGoogle Scholar
  117. 117.
    Schneider, S. and Linse, P. (2003) J. Phys. Chem. B, 107, 8030.CrossRefGoogle Scholar
  118. 118.
    Mann, B.A., Everaers, R., Holm, C., and Kremer, K. (2004) Europhys. Lett., 67, 786.ADSCrossRefGoogle Scholar
  119. 119.
    Mann, B.A., Holm, C., and Kremer, K. (2005) J. Chem. Phys., 122, 154903.ADSCrossRefGoogle Scholar
  120. 120.
    Mann, B.A., Holm, C., and Kremer, K. (2005) Macromolecular Symposia (2006), 237, 90.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • C. Holm*
    • 1
  1. 1.Max-Planck Institute for Polymer Research MainzMainzGermany

Personalised recommendations