Skip to main content

Small-Angle Scattering from Surfactants and Block Copolymer Micelles

  • Reference work entry
Soft Matter Characterization

1 Introduction

Surfactant molecules [1] have amphiphilic properties when dissolved in water. One part of the molecule, typically a hydrocarbon chain, is hydrophobic and another part is polar and/or charged and thus hydrophilic. When dissolved in water, this amphiphilic character leads above a certain temperature and concentration to the formation of micelles, in which the unfavorable contact between water and hydrocarbon chains is reduced and the favorable contact between the hydrophilic part and the water is still present. The simplest geometrical shape of the micelles is spherical with a relatively compact core consisting of the hydrocarbon “tails” surrounded by a shell of the hydrophilic “heads,” which also contains a significant amount of water. A schematic picture of a micelle is shown in Figure 4-1 . A more realistic picture of a sodium dodecyl sulfate (SDS) micelle obtained by molecular simulations is shown in Figure 4-2 [2]. Although such micelles are usually thought of as...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    1Apparent specific density means the effective density of the molecule in the solution, when also the changes in the water in the vicinity of the molecules are ascribed to the molecule.

References

  1. Hamley, I.W. (2000) Introduction to Soft Matter. Wiley, New York.

    Google Scholar 

  2. MacKerell, A.D., Jr. (1995) J. Phys. Chem., 99, 1846.

    Article  Google Scholar 

  3. Hamley, I.W. (1998) The Physics of Block Copolymers. Oxford University Press, Oxford.

    Google Scholar 

  4. Svaneborg, C. and Pedersen, J.S. (2000) J. Chem. Phys., 112, 9661.

    Article  ADS  Google Scholar 

  5. Hayter, J.B. and Penfold, J. (1981) Mol. Phys., 42, 109.

    Article  ADS  Google Scholar 

  6. Hayter, J.B. and Penfold, J. (1981) J. Chem. Soc. Faraday Trans., 77, 1851.

    Google Scholar 

  7. Hayter, J.B. and Penfold, J. (1983) Colloid Polym. Sci., 261, 1022.

    Article  Google Scholar 

  8. Chevalier, Y. and Zemb, T. (1990) Rep. Prog., 53, 279.

    Article  ADS  Google Scholar 

  9. Israelachvili, J. (1992) Intermolecular and Surface Forces, Academic Press, London.

    Google Scholar 

  10. Tanford, C. (1980) The Hydrophobic Effect. Wiley, New York.

    Google Scholar 

  11. Jones, R.A.L. (2002) Soft Condensed Matter. Oxford University Press, Oxford.

    Google Scholar 

  12. Vass, S., Plestil, J., Laggner, P., Gilanyi, T., Borbely, S., Kriechbaum, M., Jakli, G., Decsy, Z., and Abuja, P.M. (2000) J. Phys. Chem B, 107, 12752.

    Article  Google Scholar 

  13. Pedersen J.S. (1999) Curr. Opin. Colloid Interface Sci., 4, 190.

    Article  Google Scholar 

  14. Glatter, O. (2002) Fourier Transformation and Deconvolution. In: Lindner, P. and Zemb, T. (eds.), Neutrons, X-rays and Light: Scattering Methods Applied to Soft Condensed Matter. Elsevier, Amsterdam, p. 103.

    Google Scholar 

  15. Pedersen, J.S. (1997) Adv. Colloid Interface Sci., 70, 171.

    Article  Google Scholar 

  16. Pedersen, J.S. (2002) In: Lindner, P. and Zemb, T. (eds.), Neutrons, X-rays and Light: Scattering Methods Applied to Soft Condensed Matter. Elsevier, Amsterdam. p. 391.

    Google Scholar 

  17. Lindner, P. (2002) In: Lindner, P. and Zemb, T. (eds.), Neutrons, X-rays and Light: Scattering Methods Applied to Soft Condensed Matter. Elsevier, Amsterdam, p. 23.

    Google Scholar 

  18. Orthaber, D., Bergmann, A., and Glatter, O. (2000). J. Appl. Crystallogr., 33, 218.

    Article  Google Scholar 

  19. Bergström, M. and Pedersen, J.S. (1999) Phys. Chem. Chem. Phys., 1, 4437.

    Article  Google Scholar 

  20. Harada, S., Nakajima, T., Komatsu, T., and Nakagawa, T. (1978) J. Solution Chem., 7, 463.

    Article  Google Scholar 

  21. Vass, S., Török, T., Jákli, G., and Berecz, E. (1989) J. Phys. Chem. B, 93, 6559.

    Article  Google Scholar 

  22. Maccarini, M. and Briganti, G. (2000) J. Phys. Chem. B, 104, 11451.

    Article  Google Scholar 

  23. Cantù, L., Corti, M., Del Favore, E., Dubois, M., and Zemb, T. (1998) Biophys. J., 74, 1600.

    Article  Google Scholar 

  24. Hansen, J.P. and McDonald, I.R. (1986) Theory of Simple Liquids. Academic Press, San Diego, CA.

    Google Scholar 

  25. Ashcroft, N.W. and Lekner, J. (1966) Phys. Rev., 145, 83.

    Article  ADS  Google Scholar 

  26. Kinning, D.J. and Thomas, E.L. (1984) Macromolecules, 17, 1712.

    Article  ADS  Google Scholar 

  27. Hansen, J.-P. and Hayter, J.B. (1982) Mol. Phys., 46, 651.

    Article  ADS  Google Scholar 

  28. Rogers, F.J. and Young, D.A. (1984) Phys. Rev., A30, 999.

    ADS  Google Scholar 

  29. Pedersen, J.S., Posselt, D., and Mortensen, K. (1990) J. Appl. Crystallogr., 23, 321.

    Article  Google Scholar 

  30. Pedersen, J.S. (1993) J. de Phys. IV France, Coll. C8 3, 491.

    Google Scholar 

  31. Pedersen, J.S. and Riekel, C. (1991) J. Appl. Crystallogr., 24, 893.

    Article  Google Scholar 

  32. Kotlarchyk, M. and Chen, S.-H. (1983) J. Chem. Phys., 79, 2461.

    Article  ADS  Google Scholar 

  33. Pedersen, J.S. (1994) J. Appl. Crystallogr., 27, 595.

    Article  Google Scholar 

  34. Gazzillo, D., Giacometti, A., Valle, R.G.D., Venuti, E., and Carsughi, F. (1999) J. Chem. Phys., 111, 7636.

    Article  ADS  Google Scholar 

  35. Vrij, A. (1979) J. Chem. Phys., 71, 3267.

    Article  ADS  Google Scholar 

  36. Ruiz-Estrada, H., Medina-Noyola, M., and Nägele, G. (1990) Physica A, 168, 919.

    Article  ADS  Google Scholar 

  37. D’Aguanno, B. and Klein, R. (1992) Phys. Rev. A, 46, 7652.

    Article  ADS  Google Scholar 

  38. Guinier, A. (1939) Ann. Phys., 12, 161.

    MATH  Google Scholar 

  39. Mittelbach, P. and Porod, G. (1962) Acta Phys. Austriaca, 15, 122.

    Google Scholar 

  40. Caponetti, E., Floriano, M.A., Di Dio, E., and Triolo, R. (1993) J. Appl. Crystallogr., 26, 612.

    Article  Google Scholar 

  41. Fournet, G. (1951) Bull. Soc. Fr. Minéral. Crist., 74, 39.

    Google Scholar 

  42. Cusack, S. (1981) J. Mol. Biol., 145, 541.

    Article  Google Scholar 

  43. Mittelbach, P. and Porod. G. (1961). Acta Phys. Austriaca, 14, 405.

    Google Scholar 

  44. Bergström, M. and Pedersen, J.S. (1999) Langmuir, 15, 2250.

    Article  Google Scholar 

  45. Bergström, M. and Pedersen, J.S. (1999) J. Phys. Chem. B, 103, 8502.

    Article  Google Scholar 

  46. Reiss-Husson, V. and Luzatti, V. (1964) J. Phys. Chem., 68, 3504.

    Article  Google Scholar 

  47. Zemb, T. and Charpin, P. (1985) J. Phys., (Paris) 46, 249.

    Article  Google Scholar 

  48. Vass, S. (2001) J. Phys. Chem. B 105, 455.

    Article  Google Scholar 

  49. Berndt, I., Pedersen, J.S., and Richtering, W. (2005) J. Am. Chem. Soc., 127, 9372.

    Article  Google Scholar 

  50. Pedersen, J.S. (2005) Unpublished.

    Google Scholar 

  51. Garamus, V.M., Pedersen, J.S., Maeda, H., and Schurtenberger, P. (2003) Langmuir, 19, 3656.

    Article  Google Scholar 

  52. Porod, G. (1948) Acta Phys. Austriaca, 2, 255.

    Google Scholar 

  53. Pedersen, J. S. and Schurtenberger, P. (1996) J. Appl. Crystallogr., 29, 646.

    Article  Google Scholar 

  54. Neugebauer, T. (1943) Ann. Phys. (Leipzig), 42, 509.

    ADS  MATH  Google Scholar 

  55. Zimm, B.H. (1948) J. Chem. Phys., 16, 1093.

    Article  ADS  Google Scholar 

  56. Schweizer, K.S. and Curro, J.G., (1994) Adv. Polym. Sci., 116, 319.

    Article  Google Scholar 

  57. Pedersen, J.S. (unpublished)

    Google Scholar 

  58. Cannavacciuolo, L., Pedersen, J.S., and Schurtenberger, P. (2002) Langmuir, 18, 2922.

    Article  Google Scholar 

  59. Cotter, M.A. and Martire D.E. (1970) J. Phys. Chem., 52, 1902.

    Article  Google Scholar 

  60. Cotter, M.A., and Martire D.E. (1970) J. Phys. Chem., 52, 1909.

    Article  Google Scholar 

  61. Cates, M.E. and Candau, S.J. (1990) J. Phys. Condens. Matter, 2, 6869.

    Article  ADS  Google Scholar 

  62. Schurtenberger P. and Cavaco C. (1993) J Phys II, 3, 1279.

    Article  Google Scholar 

  63. Kratky, O. and Porod, G. (1949) Rec. Trav. Chim. Pays Bas, 68, 1106.

    Article  Google Scholar 

  64. Yoshizaki, T. and Yamakawa, H. (1980) Macromolecules, 13, 1518.

    Article  ADS  Google Scholar 

  65. Pedersen J.S. and Schurtenberger P. (1996) Macromolecules, 29, 7602.

    Article  ADS  Google Scholar 

  66. Sommer, C., Pedersen, J.S., Egelhaaf, S.U., Cannavacciuolo, L., Kohlbrecher, J., and Schurtenberger, P. (2002) Langmuir, 18, 2495.

    Article  Google Scholar 

  67. Pedersen, J.S. and Schurtenberger, P. (1999) Europhys. Lett., 45, 666.

    Article  ADS  Google Scholar 

  68. Pedersen J.S. and Schurtenberger P. (2004) J. Polym. Sci. B Polym. Phys., 42, 3081.

    Article  ADS  Google Scholar 

  69. Ohta, T. and Oono, Y. (1982) Phys. Lett., 89A, 460.

    ADS  Google Scholar 

  70. Huber, K. and Stockmayer, W.H. (1987) Macromolecules, 20, 1400.

    Article  ADS  Google Scholar 

  71. Garamus, V.M., Pedersen, J.S., Kawasaki, H., and Maeda, H. (2000) Langmuir, 16, 6431.

    Article  Google Scholar 

  72. Odijk, T. (1977) J. Polym. Sci. Polym. Phys. Ed., 15, 477.

    Article  ADS  Google Scholar 

  73. Skolnick, J. and Fixman, M. (1977) Macromolecules, 10, 944.

    Article  ADS  Google Scholar 

  74. Fixman, M. and Skolnick, J. (1978) Macromolecules, 11, 863.

    Article  ADS  Google Scholar 

  75. Cannavacciuolo, L., Sommer, C., Pedersen, J.S., and Schurtenberger, P. (2000) Phys. Rev. E, 62, 5409.

    Article  ADS  Google Scholar 

  76. Pedersen, J.S. and Svaneborg, J.S. (2002) Curr. Opin. Colloid Interface Sci., 8, 507.

    Google Scholar 

  77. Mortensen, K. and Pedersen, J.S. (1993) Macromolecules, 26, 805.

    Article  ADS  Google Scholar 

  78. King, S.M., Heenan, R.K., Cloke, V.M., and Washington, C. (1997) Macromolecules, 30, 6215.

    Article  ADS  Google Scholar 

  79. Goldmints, I., von Gottberg, F.K., Smith, K.A., and Hatton, T.A. (1997) Langmuir, 13, 3659.

    Article  Google Scholar 

  80. Goldmints, I., Yu, G.-E., Booth, C., Smith, K.A., and Hatton, T.A. (1999) Langmuir, 15, 1651.

    Article  Google Scholar 

  81. Yang, L., Alexandridis, P., Steytler, D.C., Kositza, M.J., and Holzwarth, J.F. (2000) Langmuir, 16, 8555.

    Article  Google Scholar 

  82. Poppe, A., Willner, L., Allgaier, J., Stellbrink, J., and Richter, D. (1997) Macromolecules, 30, 7462.

    Article  ADS  Google Scholar 

  83. Liu, Y., Chen, S.-H., and Huang, J.S. (1998) Macromolecules, 31, 2236.

    Article  ADS  Google Scholar 

  84. Förster, S. and Burger, C. (1998) Macromolecules, 31, 879.

    Article  ADS  Google Scholar 

  85. Förster, S., Wenz, E., and Lindner, P. (1996) Phys. Rev. Lett., 77, 95.

    Article  ADS  Google Scholar 

  86. Won, Y.-Y., Davis, H.T., Bates, F.S., Agamalian, M., and Wignall, G.D. (2000) J. Phys. Chem. B, 104, 7134. Ibid. [Erratum]. J. Phys. Chem. B, 104, 9054.

    Article  Google Scholar 

  87. Auvray, L. and De Gennes, P.G. (1986) Europhys. Lett., 2, 647.

    Article  ADS  Google Scholar 

  88. Richter, D., Schneiders, D., Monkenbusch, M., Willner, L., Fetters, L.J., Huang, J.S., Lin, M., Mortensen, K., and Farago, B. (1997) Macromolecules, 30, 1053.

    Article  ADS  Google Scholar 

  89. Willner, L., Poppe, A., Allgaier, J., Monkenbusch, M., Lindner, P., and Richter, D. (2000) Europhys. Lett., 51, 628.

    Article  ADS  Google Scholar 

  90. Dingenouts, N., Seelenmeyer, S., Deike, I., Rosenfeldt, S., Ballauff, M., Lindner, P., and Narayanan, T. (2001) Phys. Chem. Chem. Phys., 3, 1169.

    Article  Google Scholar 

  91. Förster, S., Hermsdorf, N., Leube, W., Schnablegger, H., Regenbrecht, M., Akari, S., Lindner, P., and Böttcher, C. (1999) J. Phys. Chem. B, 103, 6657.

    Article  Google Scholar 

  92. Muller, F., Delsanti, M., Auvray, L., Yang, J., Chen, Y.J., Mays, J.W., Deme. B., Tirrell, M., and Guenoun, P. (2000) Eur. Phys. J. E, 3, 45.

    Article  Google Scholar 

  93. Pedersen, J.S. and Gerstenberg, M.C. (1996) Macromolecules, 29, 1363.

    Article  ADS  Google Scholar 

  94. Pedersen, J.S. (2001) J. Chem. Phys., 114, 2839.

    Article  ADS  Google Scholar 

  95. Debye, P. (1947) J. Phys. Colloid Chem., 51, 18.

    Article  Google Scholar 

  96. Derici, L., Ledger, S., Mai, S.M., Booth, C., Hamley, I.W., and Pedersen, J.S. (1999) Phys. Chem. Chem. Phys., 1, 2773.

    Article  Google Scholar 

  97. Borbely, S. (2000) Langmuir, 16, 5540.

    Article  Google Scholar 

  98. Borbely, S. and Pedersen, J.S. (2000) Physica B, 276, 363.

    Article  ADS  Google Scholar 

  99. Pedersen, J.S., Hamley, I.W., Ryu, C.Y., and Lodge, T.P. (2000) Macromolecules, 33, 542.

    Article  ADS  Google Scholar 

  100. Mao, G.M., Sukumaran, S., Beaucage, G., Saboungi, M.L., and Thiyagarajan, P. (2001) Macromolecules 34: 552. ibid. (Erratum) (2001) 34, 4666.

    Article  ADS  Google Scholar 

  101. Plestil, J., Kriz, J., Tuzar, Z., Prochazka, K., Melnichenko, Y.B., Wignall, G.D., Talingting, M.R., Munk, P., and Webber, S.E. (2001) Macromol. Chem. Phys., 202, 553.

    Article  Google Scholar 

  102. Glatter, O., Scherf, G., Schillén, K., and Brown, W. (1994) Macromolecules, 27, 6046

    Article  ADS  Google Scholar 

  103. Glatter, O., Scherf, G., Schillén, K., and Brown, W. (1994) Macromolecules, 27, 6046.

    Article  ADS  Google Scholar 

  104. Pedersen, J.S. (2000) J. Appl. Crystallogr., 33, 637.

    Article  Google Scholar 

  105. Pedersen, J.S., Svaneborg, C., Almdal, K., Hamley, I.W., and Young, R.N. (2003) Macromolecules, 36, 416.

    Article  ADS  Google Scholar 

  106. Svaneborg, C. and Pedersen, J.S. (2000) J. Chem. Phys., 112, 9661.

    Article  ADS  Google Scholar 

  107. Svaneborg, C. and Pedersen J.S. (2002) Macromolecules, 35, 1028.

    Article  ADS  Google Scholar 

  108. Pedersen, J.S. (2001) J. Chem. Phys., 114, 2839.

    Article  ADS  Google Scholar 

  109. Borbély, S., (2000) Langmuir, 16, 5540.

    Article  Google Scholar 

  110. Pedersen, J.S. and Gerstenberg, M.C. (2003) Colloids Surf. A Physicochem. Eng. Asp., 213, 175.

    Article  Google Scholar 

  111. Pedersen, J.S., Hamley, I.W., Ryu, C.Y., and Lodge, T.P. (2000) Macromolecules, 33, 542.

    Article  ADS  Google Scholar 

  112. Pedersen J.S. and Sommer, C. (2005) Macromolecules, 37, 1682.

    Google Scholar 

  113. Sommer, C., Garamus, V.M., and Pedersen J.S. (2005) Langmuir, 21, 2137.

    Article  Google Scholar 

  114. Daoud, M. and Cotton, J.P. (1982) J. Phys. (France), 43, 531.

    Article  Google Scholar 

  115. Marques, C.M., Izzo, D., Charitat, T., and Mendes, E. (1998) Eur. Phys. J., 3, 353.

    ADS  Google Scholar 

  116. Groenewegen, W., Egelhaaf, S.U., Lapp, A., and van der Maarel, J.R.C. (2000) Macromolecules, 33, 3283.

    Article  ADS  Google Scholar 

  117. Pedersen, J.S. (2002) Monte Carlo Simulation Techniques Applied in the Analysis of Small-Angle Scattering Data from Colloid and Polymer Systems. In: Lindner, P. and Zemb, T. (eds.), Neutrons, X-rays and Light: Scattering Methods Applied to Soft Condensed Matter. Elsevier, Amsterdam, p. 381.

    Google Scholar 

Download references

Acknowledgements

I am very grateful to Prof. A.D. MacKerell Jr, Dr. S. Vass and Dr. Jeff Penfold for allowing me to use figures from their work.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this entry

Cite this entry

Pedersen, J.S. (2008). Small-Angle Scattering from Surfactants and Block Copolymer Micelles. In: Borsali, R., Pecora, R. (eds) Soft Matter Characterization. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4465-6_4

Download citation

Publish with us

Policies and ethics