Skip to main content

Optical Microscopy of Fluctuating Giant Vesicles and Motile Cells

  • Reference work entry
Soft Matter Characterization
  • 4662 Accesses

1 Introduction

1.1 Overview

During the last two decades, optical microscopy has experienced a renaissance. Initiated by the advent of confocal microscopes [1] and optical tweezers [2] in the mid 1980s, as well as 2-photon microscopy [3] in the early 1990s, direct 3-dimensional observation and manipulation of biological material with high resolution continue to deliver many important insights. A more specialized quasi 2-dimensional technique, total internal reflection fluorescence (TIRF) [4] allows observation near a substrate with a comparatively simple set up but superb signal-to-noise ratio. At the same time, ever increasing computer power made it possible to perform advanced real-time image analysis on micrographs obtained with classical phase and differential interference contrast (DIC) [5–7]. Automated tracking of single particles and membrane movements can be done with nanometer resolution.

This Chapter covers some specific aspects of light microscopy of giant vesicles and motile...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The concept of a molecular shape should be taken with some caution. In fact, molecular configurations are a function of the local environment and, strictly speaking, cannot be viewed as an independent property of a molecule.

  2. 2.

    Due to the quasi 2-dimensional membrane, the molecules do not form a regular crystal.

  3. 3.

    Spinodal lines delimit the regions of metastable shapes. At its respective spinodal, a particular shape becomes unstable to small perturbations and decays into the globally stable configuration.

  4. 4.

    In analogy to thermodynamics, this tricritical point separates a line of first (\(D^{pro/pear}\)) and second-order (\(C^{pro/pear}\)) phase transitions.

References

  1. Amos, W.B. and White, J.G. (2003) Biol. Cell, 95, 335–342.

    Article  Google Scholar 

  2. Ashkin, A., Dziedzic, J.M., Bjorkholm, J.E., and Chu, S. (1986) Opt. Lett., 11, 288–290.

    Article  ADS  Google Scholar 

  3. Denk, W., Strickler, J.H., and Webb, W.W. (1990) Science, 248, 73–76.

    Article  ADS  Google Scholar 

  4. Axelrod, D. (2000) Total internal fluorescence microscopy. In Periasamy, A. (ed.), Methods in Cellular Imaging, American Physiological Society Book Series, Oxford University Press, Oxford.

    Google Scholar 

  5. Käs, J. and Sackmann E. (1991) Biophys. J., 60, 825.

    Article  Google Scholar 

  6. Döbereiner, H.-G., Evans, E., Kraus, M., Seifert, U., and Wortis, M. (1997) Phys. Rev. E, 55, 4458.

    Article  ADS  Google Scholar 

  7. Döbereiner, H.-G., Selchow, O., and Lipowsky, R. (1999) Eur. Biophys. J., 28, 174.

    Article  Google Scholar 

  8. Brochard, F., Joannny, J.F., and Andelman D.(1987) In Meunier, J., Langevin, D., and Broccara, N., (eds.), Physics of Amphiphilic Layers. Springer, Berlin, Heidelberg, New York.

    Google Scholar 

  9. Lipowsky, R. (1992) Nature, 349, 475.

    Article  ADS  Google Scholar 

  10. Seifert, U. (1997) Adv. Phys., 46, 13.

    Article  ADS  Google Scholar 

  11. Walde, P. and Luisi, L. (eds.) Giant Vesicles, Perspectives in Supramolecular Chemistry, vol 6. Wiley & Sons, New York.

    Google Scholar 

  12. Manneville, J.-B., Bassereau, P., Ramaswamy, S., and Prost, J. (2001) Phys. Rev. E, 64, 21908.

    Article  ADS  Google Scholar 

  13. Davidson, M.W., Abramowitz, M. Olympus America, Inc., Optical Microscopy Primer. http://www.micro.magnet.fsu.edu

  14. Pécréaux, J., Döbereiner, H-G., Prost, J., Joanny, J-F., and Bassereau, P. (2004) Eur. Phys. J. E, 13, 277.

    Article  Google Scholar 

  15. Döbereiner, H.-G., Gompper, G., Haluska, C.K., Kroll, D.M., Petrov, P.G., and Riske, K. (2003) Phys. Rev. Lett., 91, 048301.

    Article  ADS  Google Scholar 

  16. Giannone, G., Dubin-Thaler, B., Döbereiner, H.-G. Kiefer, N., Bresnick, A.R., and Sheetz, M.P. (2004) Cell, 116, 431.

    Article  Google Scholar 

  17. Dubin-Thaler, B., Giannone, G., Döbereiner, H.-G., and Sheetz, M.P. (2004) Biophys. J., 86, 1794.

    Article  ADS  Google Scholar 

  18. Otsu, N.A. (1979) IEEE Trans. Syst. Man Cybern., 62–66.

    Google Scholar 

  19. Helfrich, W. (1974) Z. Naturforsch., 29, 510.

    Google Scholar 

  20. Evans, E. (1974) Biophys. J., 14, 923.

    Article  ADS  Google Scholar 

  21. Helfrich, W. (1973) Z. Naturforsch., 28c, 693.

    Google Scholar 

  22. Miao, L., Seifert, U., Wortis, M., and Döbereiner, H.-G. (1994) Phys. Rev. E, 49, 5389.

    Article  ADS  Google Scholar 

  23. Seifert, U., Berndl, K., and Lipowsky, R. (1991) Phys. Rev. A, 44, 1182.

    Article  ADS  Google Scholar 

  24. Svetina, S., Brumen, M., and Žekš, B. (1985) Stud. Biophys., 110, 177.

    Google Scholar 

  25. Deuling, H.J. and Helfrich, W. (1976) Biophys. J., 16, 861.

    Article  ADS  Google Scholar 

  26. Svetina, S. and Žekš, B. (1989) Eur. Biophys. J., 110, 101.

    Article  Google Scholar 

  27. Miao, L., Fourcade, B., Rao, M., Wortis, M., and Zia, R.K.P. (1991) Phys. Rev. A, 43, 6843.

    Article  ADS  Google Scholar 

  28. Sheetz, M.P. and Singer, S.J. (1974) Proc. Natl Acad. Sci. USA, 71, 4457.

    Article  ADS  Google Scholar 

  29. Evans, E.A. (1980) Biophys. J., 30, 265.

    Article  ADS  Google Scholar 

  30. Waugh, R.E., Song, J., Svetina, S., and Žekš, B. (1992) Biophys. J., 61, 974.

    Article  ADS  Google Scholar 

  31. Berndl, K., Käs, J., Lipowsky, R., Sackmann, E., and Seifert, U. (1990) Europhys. Lett., 13, 659.

    Article  ADS  Google Scholar 

  32. Farge, F., Devaux, P. (1992) Biophys. J., 61, 347.

    Article  ADS  Google Scholar 

  33. Mui, B.L.-S., Döbereiner, H.-G., Madden, T.D., and Cullis, P.R. (1995) Biophys. J., 69, 930.

    Article  ADS  Google Scholar 

  34. Döbereiner, H.-G., Evans, E., Seifert, U., and Wortis, M. (1995) Phys. Rev. Lett., 75, 3360.

    Article  ADS  Google Scholar 

  35. Israelachvili, J. (1991) Intermolecular and Surface Forces, (2nd ed.). Academic Press, London.

    Google Scholar 

  36. Homa, R. and Pownall, H.J. (1988) Biochim. Biophys. Acta, 938, 155.

    Article  Google Scholar 

  37. Kornberg, R.D. and McConnell, H.M. (1971) Biochemistry, 10, 1111.

    Article  Google Scholar 

  38. Raphael, M.R. and Waugh, R. (1996) Biophys. J., 71, 1374.

    Article  ADS  Google Scholar 

  39. Redelmeier, T.E., Hope, M.J., and Cullis, P.R. (1990) Biochemistry, 29, 3046.

    Article  Google Scholar 

  40. Winterhalter, M. and Helfrich, H. (1992) J. Phys. Chem., 92, (1988); 6865 ibid., 327.

    Google Scholar 

  41. Mitchell, D.J. and Ninham, B.W. (1989) Langmuir, 5, 1121.

    Article  Google Scholar 

  42. Winterhalter, M. and Helfrich, H. (1992) J. Phys. Chem., 96, 327.

    Article  Google Scholar 

  43. May, S. (1996) J. Chem. Phys., 105, 8314.

    Article  ADS  Google Scholar 

  44. Chou, T., Jaric, M.V., and Siggia, E.D. (1998) Biophys. J., 72, 2042.

    Article  Google Scholar 

  45. Lee, J., Petrov, P.G., and Döbereiner, H.-G. (1999) Langmuir, 15, 8543.

    Article  Google Scholar 

  46. Döbereiner, H.-G., Lehmann, A., Goedel, W., Selchow, O., and Lipowsky, R. (1998) In Materials Science of the Cell, Mulder, B., Vogel, V., and Schmidt, C. (eds.), Materials Research Society Symposium Proceedings, 489, p. 101.

    Google Scholar 

  47. Lipowsky, R. (1995) Europhys. Lett., 30, 197.

    Article  ADS  Google Scholar 

  48. Hiergeist, C. and Lipowsky, R. (1996) J. Phys. II France, 6, 1465.

    Article  Google Scholar 

  49. Hiergeist, C., Indrani, V., and Lipowsky, R. (1996) Europhys. Lett., 36, 491.

    Article  ADS  Google Scholar 

  50. Eisenriegler, E., Hanke, A., and Dietrich, S. (1996) Phys. Rev. E, 54, 1134.

    Article  ADS  Google Scholar 

  51. Dietrich, C., Angelova, M., and Pouligny, B. (1997) J. Phys II, 7, 1651.

    Article  Google Scholar 

  52. Yaman, K., Pincus P., and Marques, C.M. (1997) Phys. Rev. Lett., 78, 4514.

    Article  ADS  Google Scholar 

  53. Dinsmore, A.D., Wong, D.T., Nelson, P., and Yodh, A.G. (1998) Phys. Rev. Lett., 80, 409.

    Article  ADS  Google Scholar 

  54. Lipowsky, R., and Döbereiner, H.-G. (1998) Europhys. Lett., 42, 219.

    Article  ADS  Google Scholar 

  55. Döbereiner, H.-G., Selchow, O., and Lipowsky, R. (1999) Eur. Biophys. J., 28, 174.

    Article  Google Scholar 

  56. Safinya, C.R., Koltover, I., and Rädler, J.O. (1998) Curr. Opin. Colloid Interface Sci., 3, 69.

    Article  Google Scholar 

  57. Hope, M.J., Mui, B., Ansell, S., and Ahkong, Q.F. (1998) Mol. Membr. Biol., 15, 1.

    Article  Google Scholar 

  58. Rädler, J.O., Koltover, I., Salditt, T., and Safinya, C.R. (1997) Science, 275, 810.

    Article  Google Scholar 

  59. Angelova, M.I., Hristova, N., and Tsoneva, I. (1999) Eur. Biophys. J., 28, 142.

    Article  Google Scholar 

  60. Wick, R., Angelova, M.I., Walde, P., and Luisi, P.L. (1996) Chem. Bio., 3, 105.

    Article  Google Scholar 

  61. Riske, K.A. and Döbereiner, H.-G. (2003) Biophys. J., 85, 2352–2362.

    Article  Google Scholar 

  62. Sokabe, M., Sachs, F., and Jing, Z.Q. (1991) Biophys. J., 59, 722.

    Article  ADS  Google Scholar 

  63. Keller, S.L., Bezrukov, S.M., Gruner, S.M., Tate, M.W. Vodyanoy, I., and Parsegian, V.A. (1993) Biophys. J., 65, 23.

    Article  ADS  Google Scholar 

  64. Gompper, G. and Kroll, D.M. (1997) J. Pys. Condens. Matter, 9, 8795.

    Article  ADS  Google Scholar 

  65. Gompper, G. and Kroll, D.M. (1994) Phys. Rev. Lett., 73, 2139.

    Article  ADS  Google Scholar 

  66. Kraus, M., Seifert, U., and Lipowsky, R. (1995) Europhys. Lett., 32, 431.

    Article  ADS  Google Scholar 

  67. Häckl, W., Seifert, U., and Sackmann, E. (1997) J. Phys. II, 7, 1141.

    Article  Google Scholar 

  68. Méléard, P., Gerbeaud, C., Bardusco, P., Jeandaine, N., Mitov, M.D., and Fernandez-Puente, L. (1998) Biochimie, 80, 401.

    Article  Google Scholar 

  69. Petrov, P.G., Lee, J., and Döbereiner, H.-G. (1999) Europhys. Lett., 48, 435.

    Article  ADS  Google Scholar 

  70. Lee, J., Petrov, P.G., and Döbereiner, H.-G. (1999) Langmuir, 15, 8543.

    Article  Google Scholar 

  71. Chou, T., Jaric, M.V., and Siggia, E.D. (1997) Biophys. J., 72, 2042.

    Article  ADS  Google Scholar 

  72. Bray, D. (2001) Cell Movements: From Molecules to Motility, (2nd ed). Garland Publishing, New York.

    Google Scholar 

  73. Stossel, T.P. (1993) Science, 260, 1086.

    Article  ADS  Google Scholar 

  74. Pantaloni, D., Le Clainche, C., and Carlier, M-F. (2001) Science, 292, 1502.

    Article  ADS  Google Scholar 

  75. Pollard, T.D. and Borisy, G.G. (2003) Cell, 112, 453.

    Article  Google Scholar 

  76. Bernheim-Grosswasser, A., Wiesner, S., Golsteyn, R.M., Carlier, M-F., and Sykes, C. (2002) Nature, 417, 308.

    Article  ADS  Google Scholar 

  77. Upadhyaya, A. and van Oudenaarden, A. 2003 Curr. Biol., 13, R734.

    Article  Google Scholar 

  78. Gerbal, F., Chaikin, P., Rabin, Y., and Prost, J. (2000) Biophys. J., 79, 2259.

    Article  Google Scholar 

  79. Dembo, M. and Wang, Y.-L. (1999) Biophys. J., 76, 2307.

    Article  ADS  Google Scholar 

  80. Balaban et al. (2001) Nat. Cell Biol., 3, 466.

    Article  Google Scholar 

  81. Jiang, G., Giannone, G., Critchley, D.R., Fukumoto, E., and Sheetz, M.P. (2003) Nature, 424, 334.

    Article  ADS  Google Scholar 

  82. Bischofs, I.B., Safran, S.A., and Schwarz, U.S. (2004) Phys. Rev. E, 69, 021911.

    Article  ADS  Google Scholar 

  83. Döbereiner, H.-G., Dubin-Thaler, B., Giannone, G., Xenias, H.S., and Sheetz, M.P. (2004) Phys. Rev. Lett., 98, 108105.

    Article  Google Scholar 

  84. Humphrey, D., Duggan, C., Saha, D., Smith, D., and Käs, J. (2002) Nature, 416, 413–416.

    Article  ADS  Google Scholar 

  85. Kruse, K. and Jülicher, F. (2003) Phys. Rev. E, 67, 051913.

    Article  ADS  Google Scholar 

  86. Kruse, K., Joanny, J.F., Jülicher, F., Prost, J., and Sekimoto, K. (2004) Phys. Rev. Lett., 92, 078101.

    Article  ADS  Google Scholar 

  87. Lo, C.M., Wang, H.B., Dembo, M., and Wang, Y.L. (2000) Biophys. J., 79, 144–152.

    Article  Google Scholar 

  88. Döbereiner, H.-G., Dubin-Thaler, B.J., Giannone, G., and Sheetz, M.P. (2005) J. Appl. Physiol., 98, 1542–1546.

    Article  Google Scholar 

  89. Hartwell, L.H., Hopfield, J.J., Leibler, S., and Murray, A.W. (1999) Nature, 402, Suppl, C47.

    Article  Google Scholar 

  90. Pollard, T.D. (2003) Nature, 422, 741–745.

    Article  ADS  Google Scholar 

  91. Förster, S. and Krämer, E. (1999) Macromolecules, 32, 2783.

    Article  ADS  Google Scholar 

  92. Discher, B.M., Won, Y.-Y., Ege, D.S., Lee, J.C-M., Bates, F.S., Discher, D.E., and Hammer, D.A. (1999) Science, 284, 1143.

    Article  ADS  Google Scholar 

  93. Marsh, D. (1990) Handbook of Lipid Bilayers. CRC Press, Boca Raton.

    Google Scholar 

  94. Needham, D. and Evans, E. (1988) Biochem., 27, 8261 (1988); D. Needham, T.J. McIntosh, and E. Evans, ibid. 4668.

    Article  Google Scholar 

  95. Dimova, R., Seifert, U., Pouligny, B., Förster, S., and Döbereiner, H.-G. (2002) Eur. Phys. J. E, 7, 241.

    Article  Google Scholar 

  96. Zhelev, D.V., Needham, D., and Hochmuth, R.M. (1994) Biophys. J., 67, 720.

    Article  ADS  Google Scholar 

  97. Evans, E. and Rawicz, W. (1990) Phys. Rev. Lett., 64, 2094.

    Article  ADS  Google Scholar 

  98. Evans, E.A. and Skalak, R. (1980) Mechanics and Thermodynamics of Biomembranes, CRC Press, Boca Raton.

    Google Scholar 

  99. Gennis, R.B. (1989) Biomembranes. Springer, Berlin Heidelberg New York.

    Google Scholar 

  100. Mui, B.L.-S., Cullis, P.R., Evans, E.A., and Madden, T.D. (1993) Biophys. J., 64, 443.

    Article  ADS  Google Scholar 

  101. Heinrich, V., Svetina, S., and Žekš, B. (1993) Phys. Rev. E, 48, 3112.

    Article  ADS  Google Scholar 

  102. Wintz, W., Döbereiner, H.-G., and Seifert, U. (1996) Europhys. Lett., 33, 403.

    Article  ADS  Google Scholar 

  103. Jarić, M., Seifert, U., Wintz, W., and Wortis, M. (1995) Phys. Rev. E, 52, 6623.

    Article  ADS  Google Scholar 

  104. Döbereiner, H.-G., Käs, J., Noppel, D., Sprenger, I., and Sackmann, E. (1993) Biophys. J., 65, 1396.

    Article  Google Scholar 

  105. Döbereiner, H.-G. and Seifert, U. (1996) Europhys. Lett., 36, 325.

    Article  ADS  Google Scholar 

  106. Dickinson, R.B. and Purich, D.L. (2002) Biophys. J., 82, 605.

    Article  Google Scholar 

  107. Mogilner, A. and Oster, G. (2003) Biophys. J., 84, 1591.

    Article  ADS  Google Scholar 

  108. Vallotton, P., Gupton, S.L., Waterman-Storer, C.M., and Danuser, G. (2004) PNAS, 101, 9660.

    Article  ADS  Google Scholar 

  109. Ponti, A., Machacek, M., Gupton, S.L., Waterman-Storer, C.M., Danuser, G. (2004) Science, 305, 1782.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

First and foremost, I would like to thank my former students Astrid Gau, Christopher K. Haluska, Josephine B. Lee, Antje Reinecke, Olaf Selchow, Liyu Xu, as well as my former postdocs Rumiana Dimova, Peter G. Petrov, and Karin Riske for the productive atmosphere in my old group in Postdam. Special thanks to Gerhard Gompper and Udo Seifert for their inspiration and truly enjoyable collaboration. I have benefited greatly from discussions with my collaborators at Columbia University Benjamin J. Dubin-Thaler, Gregory Giannone, and Harry S. Xenias.

I am indebted to my academic teachers Michael Wortis, Evan Evans, Erich Sackmann, Reinhard Lipowsky, and Michael P. Sheetz for their guidance and insight. Special thanks to Michael P. Sheetz for his hospitality and support which allowed this review to be written.

Last but not least, I am grateful for discussions with my colleagues and collaborators Patricia Bassereau, Pieter R. Cullis, Willi Fenzl, Stefan Förster, Werner Goedel, Woijciek T. Góźdź, Christine Hiergeist, Josef Käs, Martin Kraus, Thomas D. Madden, Ling Miao, Barbara L.S. Mui, Jacques Pécréaux, Jacques Prost, and Wolfgang Wintz.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this entry

Cite this entry

Döbereiner, H.G. (2008). Optical Microscopy of Fluctuating Giant Vesicles and Motile Cells. In: Borsali, R., Pecora, R. (eds) Soft Matter Characterization. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4465-6_26

Download citation

Publish with us

Policies and ethics