Skip to main content

Synchrotron Small-Angle X-Ray Scattering

  • Reference work entry
Soft Matter Characterization

1 Introduction

Small-angle X-ray scattering (SAXS) is a well established technique to probe the nano-scale structure and fluctuations in soft matter. The scattering of X-rays at small-angles originate from the spatial fluctuations of the electron density within the material. The amount of structural information obtained from the scattering experiment depends to some extent on the degree of supermolecular order within the sample. For example, this can be the shape and a few parameters like the radius of gyration in the case of a dilute macromolecular suspension, while a molecular resolution structural model may be derived with a highly ordered fibre. Like other complementary scattering methods using visible light or neutrons, SAXS is a non-invasive structural technique. The high photon flux and collimation provided by modern synchrotron sources has made SAXS a unique scattering technique in terms of angular and time resolution, small sample volume, etc. Time-resolved experiments down to...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guinier, A. and Fournet, G. (1955) Small-Angle Scattering of X-rays. Wiley, New York.

    Google Scholar 

  2. Glatter, O. and Kratky, O. (eds.) (1982) Small-Angle X-ray Scattering. Academic Press, London.

    Google Scholar 

  3. Feigin, L.A. and Svergun, D.I. (1987) Structure Analysis by Small-Angle X-ray and Neutron Scattering. Plenum Press, New York.

    Google Scholar 

  4. Brumberger, H. (ed.) (1995) Modern Aspects of Small-Angle Scattering. Kluwer Academic, Dordrecht.

    Google Scholar 

  5. Lindner, P. and Zemb, T. (eds.) (2002) Neutrons, X-rays and Light: Scattering methods Applied to Soft Condensed Matter, Elsevier, Amsterdam.

    Google Scholar 

  6. Schmidt, P.W. (1995) In Brumberger, H. (ed.), Modern Aspects of Small-Angle Scattering. Kluwer Academic, Dordrecht, p. 1.

    Google Scholar 

  7. Warren, B.E. (1990) X-ray Diffraction. Dover, New York.

    Google Scholar 

  8. Als-Nielsen, J. and McMorrow, D. (2001) Elements of Modern X-ray Physics. Wiley, New York.

    Google Scholar 

  9. Jackson, J.D. (1975) Classical Electrodynamics. Wiley, New York.

    MATH  Google Scholar 

  10. Duke, P.J. (2000) Synchrotron Radiation: Production and Properties. Oxford University Press, Oxford.

    Google Scholar 

  11. Spalla, O. (2002) In Lindner, P. and Zemb T. (eds.), General theorems in small-angle scattering. Neutrons, X-rays and Light: Scattering Methods Applied to Soft Condensed Matter. Elsevier, Amsterdam, p 49.

    Google Scholar 

  12. Pedersen, J.S. (1997) Adv. Colloid Interface Sci. 70, 171; Pedersen, J.S. (2002) In Lindner, P. and Zemb, T. (eds.), Modelling of small-angle scattering data from colloids and polymer systems. Neutrons, X-rays and Light: Scattering Methods Applied to Soft Condensed Matter. Elsevier, Amsterdam, p. 391.

    Article  Google Scholar 

  13. Dingenouts, N., Bolze J., Poetschke D., Ballauff M. (1999) Adv. Polym. Sci., 144, 1.

    Article  Google Scholar 

  14. Aragon, S.R. and Pecora, R. (1976) J. Chem. Phys., 64, 2395.

    Article  ADS  Google Scholar 

  15. Kotlarchyk, M. and Chen, S.-H. (1983) J. Chem. Phys., 79, 2461.

    Article  ADS  Google Scholar 

  16. Sheu, E.Y. (1992) Phys. Rev. A, 45, 2428.

    Article  ADS  Google Scholar 

  17. Beaucage, G. (1995) J. Appl. Crystallogr., 28, 717.

    Article  Google Scholar 

  18. Beaucage, G., Kammler, H.K., and Pratsinis, S.E. (2004) J. Appl. Crystallogr., 37, 523.

    Article  Google Scholar 

  19. Debye, P., Anderson, H.R., and Brumberger, H. (1957) Static Properties of Colloidal Suspensions. J. Appl. Phys., 28, 679.

    Article  ADS  Google Scholar 

  20. Klein, R., and D’Aguanno, B. (1996) In Brown, W. (ed.), Light Scattering: Principles and Development. Clarendon Press, Oxford, p. 30.

    Google Scholar 

  21. Kaler, E.W. (1995) In Brumberger, H. (ed.), Modern Aspects of Small-Angle Scattering. Kluwer Academic, Dordrecht, p. 329.

    Google Scholar 

  22. Chen, W.-R., Chen, S.-H., and Mallamace, F. (2002), Phys. Rev. E, 66, 021403; Menon, S.V.G., Manohar, C., and Srinivasa Rao, K. (1991) J. Chem. Phys., 95, 9186.

    Article  ADS  Google Scholar 

  23. Vrij, A. (1979) J. Chem. Phys., 71, 3267.

    Article  ADS  Google Scholar 

  24. Fritz, G., Bergmann, A., Glatter, O. (2000) J. Chem. Phys., 113, 9733.

    Article  ADS  Google Scholar 

  25. Svergun, D.I. and Koch, M.H.J. (2003) Rep. Prog. Phys., 66, 1735.

    Article  ADS  Google Scholar 

  26. Pusey, P.N., van Megen, W., Bartlett, P., Ackerson, B.J., Rarity, J.G., and Underwood, S.M. (1989) Phys. Rev. Lett., 63, 2753; Megens, M., van Kats, C.M., Boesecke, P., and Vos, W.L. (1997) Langmuir, 13, 6120; Petukhov, A.V., Dolbnya, I.P., Aarts, D.G.A.L. and Vroege, G.J. (2004). Phys. Rev. E, 69, 031405.

    Article  ADS  Google Scholar 

  27. Hadjichristidis, N., Pispas, S., and Floudas, G.A. (2003) Block Copolymers: Synthetic Strategies, Physical Properties, and Applications. Wiley Interscience, Hoboken, USA.

    Google Scholar 

  28. Laughlin, R.G. (1994) The Aqueous Phase Behavior of Surfactants. Academic Press, San Diego.

    Google Scholar 

  29. Panine, P., Narayanan, T., and Vermant, J., Mewis, J. (2002) Phys. Rev. E, 66, 022401.

    Article  ADS  Google Scholar 

  30. Pedersen, J.S. (1995) In Brumberger, H. (ed.), Modern Aspects of Small-Angle Scattering. Kluwer Academic, Dordrecht, p. 57.

    Google Scholar 

  31. Boesecke, P. and Diat, O. (1997) J. Appl. Crystallogr., 30, 867.

    Article  Google Scholar 

  32. Narayanan, T., Diat, O., and Bösecke, P. (2001) Nucl. Instrum. Methods Phys. Res. A, 467, 1005.

    Article  ADS  Google Scholar 

  33. Riekel, C. (2000) Rep. Prog. Phys., 63, 233; Riekel, C., Burghammer, M. and Mueller, M. (2000) J. Appl. Crystallogr., 33, 421.

    Article  ADS  Google Scholar 

  34. Volume II in this series.

    Google Scholar 

  35. Gruebel, G. in this volume

    Google Scholar 

  36. Freund, A.K. (1998) Synchrotron X-ray beam optics. In Furrer, A. (ed.), Complementarity Between Neutron and Synchrotron X-ray Scattering. World Scientific, Singapore, p 329.

    Google Scholar 

  37. Michette, A.G. and Buckley, C.J. (eds.) (1993) X-ray Science and Technology. Institute of Physics, London.

    Google Scholar 

  38. Bonse, U. and Hart, M. (1965) Appl. Phys. Lett., 7, 238.

    Article  ADS  Google Scholar 

  39. Petrascu, A.-M., Koch, M.H.J., and Gabriel, A. (1998) J. Macromol. Sci. Phys. B, 37, 463.

    Article  Google Scholar 

  40. Lewis, R.A., Helsby, W.I., Jones, A.O., Hall, C.J., Parker, B., Sheldon, J., Clifford, P., Hillen, M., Sumner, I., Fore, N.S., Jones, R.W.M., and Roberts, K.M. (1997) Nucl. Instrum. Methods. Phys. Res. A, 392, 32.

    Article  ADS  Google Scholar 

  41. Gruner, S.M., Tate, M.W., and Eikenberry, E.F. (2002) Rev. Sci. Instrum., 73, 2815.

    Article  ADS  Google Scholar 

  42. Pontoni, D., Narayanan, T., and Rennie, A.R. (2002) J. Appl. Crystallogr., 35, 207.

    Article  Google Scholar 

  43. Bras, W. and Ryan, A.J. (1998) Adv. Colloid. Interface. Sci., 75, 1.

    Article  Google Scholar 

  44. Regenfuss, P., Clegg, R.M., Fulwyler, M.J., Barrantes, F.J., and Jovin, T.M. (1985) Rev. Sci. Instrum., 56, 283.

    Article  ADS  Google Scholar 

  45. Pollack, L., Tate, M.W., Darnton, N.C., Knight, J.B., Gruner, S.M., Eaton, W.A., and Austin, R.H. (1999) Proc. Natl. Acad. Sci. USA, 96, 10115.

    Article  ADS  Google Scholar 

  46. Plano, R.J., Safinya, C.R., Sirota, E.B., and Wenzel, L.J. (1993) Rev. Sci. Instrum., 64, 1309.

    Article  ADS  Google Scholar 

  47. Panine, P., Gradzielski, M., and Narayanan, T. (2003) Rev. Sci. Instrum., 74, 2451.

    Article  ADS  Google Scholar 

  48. Ryan, A.J. (2002) In Lindner, P. Zemb, T. (eds.), Using Synchrotron radiation to Study Structure development in polymer processing. Neutrons, X-rays and Light: Scattering Methods Applied to Soft Condensed Matter. Elsevier, Amsterdam, p. 441.

    Google Scholar 

  49. Mahendrasingam, A., Blundell, D.J., Wright, A.K., Urban, V., Narayanan, T., and Fuller, W. (2003) Polymer, 44, 5915.

    Article  Google Scholar 

  50. Huang, T.C., Toraya, H., Blanton, T.N., and Wu Y. (1993) J. Appl. Crystallogr., 26, 180.

    Article  Google Scholar 

  51. Wignall, G.D. (1991) J. Appl. Crystallogr., 24, 479.

    Article  Google Scholar 

  52. Long, G.G., Jemian, P.R., Weertman, J.R., Black, D.R., Burdette, H.E., and Spal, R. (1991) J. Appl. Crystallogr., 24, 30.

    Article  Google Scholar 

  53. Daillant, J. and Alba, M. (2000) Rep. Prog. Phys., 63, 1725.

    Article  ADS  Google Scholar 

  54. Strobl, G. (1996) The Physics of Polymers, Springer-Verlag, Berlin Heidelberg; Strobl, G. (2000) Eur. Phys. J. E, 3, 165.

    Book  Google Scholar 

  55. Agamalian, M., Christen, D.K., Drews, A.R., Glinka, C.J., Matsuoka, H., and Wignall, G.D. (1998) J. Appl. Crystallogr., 31, 235.

    Article  Google Scholar 

  56. Pontoni, D., Narayanan, T., Petit, J.-M., Grübel, G., and Beysens, D. (2003) Phys. Rev. Lett., 90, 188301.

    Article  ADS  Google Scholar 

  57. Levine, L.E. and Long, G.G. (2004) J. Appl. Crystallogr., 37, 757.

    Article  Google Scholar 

  58. Naudon, A. (1995) In Brumberger, H. (ed.), Modern Aspects of Small-Angle Scattering. Kluwer Academic, Dordrecht, p. 203.

    Google Scholar 

  59. Thompson, A.C. and Vaughan, D. (eds.) (2001) X-ray Data Booklet LBNL, University of California, Berkeley.

    Google Scholar 

  60. Stuhrmann, H.B. (1985) Adv. Polym. Sci., 67, 123.

    Article  Google Scholar 

  61. Ballauff, M. in this volume.

    Google Scholar 

  62. Dingenouts, N., Patel, M., Rosenfeldt, S., Pontoni, D., Narayanan, T., and Ballauff, M. (2004) Macromolecules, 37, 8152.

    Article  ADS  Google Scholar 

  63. Das, R., Mills, T.T., Kwok, L.W., Maskel, G.S., Millett, I.S., Doniach, S., Finkelstein, K.D., Herschlag, D., and Pollack, L. (2003) Phys. Rev. Lett., 90, 188103.

    Article  ADS  Google Scholar 

  64. Weiss, T., Narayanan, T., Wolf, C., Gradzielski, M., Panine, P., Finet, S., and Helsby, W. (2005) Phys. Rev. Lett., 94, 038303.

    Article  ADS  Google Scholar 

  65. Shioi, A. and Hatton, T.A. (2002) Langmuir, 18, 7341.

    Article  Google Scholar 

Download references

Acknowledgements

I thank A.R. Rennie for a careful reading of the manuscript and M. Ballauff for comments. The experimental results presented in this Chapter involved contributions from many collaborators and colleagues especially P. Boesecke, N. Dingenouts, A. Mahendrasingam, P. Panine, D. Pontoni, and T. Weiss. I thank the Editors R. Borsali and R. Pecora for this invitation. ESRF is acknowledged for the financial support and the provision of synchrotron beam time.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this entry

Cite this entry

Narayanan, T. (2008). Synchrotron Small-Angle X-Ray Scattering. In: Borsali, R., Pecora, R. (eds) Soft Matter Characterization. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4465-6_17

Download citation

Publish with us

Policies and ethics