Skip to main content

Fluorescence Correlation Spectroscopy

A Versatile Technique with Single-Molecue Sensitivity

  • Reference work entry
Soft Matter Characterization

1 Introduction

The sequence of the human genome was published more than 2 years ago [1]. It came as a surprise that the 2.91 billion base pair DNA examined seem to code for only about 30,000 proteins, indicating that many biological mechanisms are barely known to exist, let alone fully understood. Therefore, current biological research is focusing not only the identification, but mainly on the precise physico-chemical characterization of elementary processes on the level of individual proteins and nucleic acids. Among the ultra-sensitive techniques that allow even single molecule measurements are atomic force microscopy (AFM) or fluorescence spectroscopy. One outstanding feature of the latter is its comparable noninvasiveness, which makes it perfectly suited for measurements inside living cells. Fluorescence correlation spectroscopy(FCS) is one of the many different modes of high-resolution spatial and temporal analysis of extremely low concentrated biomolecules. From the spontaneous...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Venter, J.C. et al. (2001) Science, 291, 1304–1351.

    Article  ADS  Google Scholar 

  2. Winkler, T., Kettling, U., Koltermann, A., and Eigen, M. (1999) PNAS, 96, 1375–1378.

    Article  ADS  Google Scholar 

  3. Denk, W. and Svoboda, K. (1997) Neuron, 18, 351–357.

    Article  Google Scholar 

  4. Denk, W., Strickler, J.H., and Webb, W.W. (1990) Science 248, 73–76.

    Article  ADS  Google Scholar 

  5. Denk, W., Piston, D.W., and Webb, W.W. (1995) Two-photon molecular excitation in laser-scanning microscopy. In Pawley, J.B. (ed.), Handbook of Biological Confocal Microscopy, pp. 445–458. Plenum Press, New York.

    Google Scholar 

  6. Tsien, R.Y. (1998) Annu. Rev. Biochem., 67, 509–544.

    Article  Google Scholar 

  7. Miyawaki, A., Sawano, A., Kogure, T. (2003) Nature, 5, S1–S7.

    Google Scholar 

  8. Matz, M.V. et al. (1999) Nat. Biotechnol., 17, 969–973.

    Article  Google Scholar 

  9. Wiedenmann, J., Schenk, A., Rocker, C., Girod, A., Spindler, K.D., and Nienhaus, G.U. (2002) PNAS, 99, 11646–11651.

    Article  ADS  Google Scholar 

  10. Chan, W.C. and Nie, S. (1998) Science, 281, 2016–2018.

    Article  ADS  Google Scholar 

  11. Palmer, A.G., III and Thompson, N.L. (1987) Biophys. J., 51, 339–343.

    Article  Google Scholar 

  12. Widengren, J. and Rigler, R. (1998) Cell Mol. Biol., 44, 857–879.

    Google Scholar 

  13. Widengren, J., Mets, U., and Rigler, R. (1995) J. Phys. Chem., 99, 13368–13379.

    Article  Google Scholar 

  14. Schwille, P., Kummer, S., Heikal, A.A., Moerner, W.E., and Webb, W.W. (2000) PNAS, 97, 151–156.

    Article  ADS  Google Scholar 

  15. Schwille, P., Korlach, J., and Webb, W.W. (1999) Cytometry, 36, 176–182.

    Article  Google Scholar 

  16. Wachsmuth, M., Waldeck, W., and Langowski, J. (2000) J. Mol. Biol., 298, 677–689.

    Article  Google Scholar 

  17. Feder, T.J., Brustmascher, I., Slattery, J.P., Baird, B., and Webb, W.W. (1996) Biophys. J., 70, 2767–2773.

    Article  ADS  Google Scholar 

  18. Kask, P., Piksarv, P., Mets, U., Pooga, M., and Lippmaa, E. (1987) Eur. Biophys. J., 14, 257–261.

    Article  Google Scholar 

  19. Widengren, J., Mets, U., and Rigler, R. (1999) Chem. Phys., 250, 171–186.

    Article  Google Scholar 

  20. Ehrenberg, M. and Rigler, R. (1976) Quart. Rev. Biophys., 9, 69–81.

    Article  Google Scholar 

  21. Ehrenberg, M. and Rigler, R. (1974) Chem. Phys., 4, 390–401.

    Article  ADS  Google Scholar 

  22. Aragón, S.R. and Pecora, R. (1975) Biopolymers, 14, 119–138.

    Article  Google Scholar 

  23. Eggeling, C., Fries, J.R., Brand, L., Günther, R., and Seidel, C.A.M. (1998) PNAS, 95, 1556–1561.

    Article  ADS  Google Scholar 

  24. Brinkmeier, M., Dörre, K., Stephan, J., and Eigen, M. (1999) Anal. Chem., 71, 609–616.

    Article  Google Scholar 

  25. Schwille, P., Meyer-Almes, F.J., and Rigler, R. (1997) Biophys. J., 72, 1878–1886.

    Article  Google Scholar 

  26. Schwille, P. (2001) Cross-correlation analysis in FCS. In Fluorescence Correlation Spectroscopy: Theory and Applications, pp. 360–378. Springer, Berlin Heidelberg New York, Germany.

    Chapter  Google Scholar 

  27. Thompson, N.L. (1991) Fluorescence correlation spectroscopy. In Lakowicz, J.R. (ed.), Topics in Fluorescence Spectroscopy, Volume 1: Techniques, pp. 337–378. Plenum Press, New York.

    Google Scholar 

  28. Eigen, M. and Rigler, R. (1994) Proc. Natl. Acad. Sci. USA, 91, 5740–5747.

    Article  ADS  Google Scholar 

  29. Schwille, P., Bieschke, J., and Oehlenschläger, F. (1997) Biophys. Chem., 66, 211–228.

    Article  Google Scholar 

  30. Chen, Y., Muller, J.D., Tetin, S.Y., Tyner, J.D., and Gratton, E. (2000) Biophys. J., 79, 1074–1084.

    Article  Google Scholar 

  31. Palmer, A.G., III and Thompson, N.L. (1989) Appl. Opt., 28, 1214–1220.

    Article  ADS  Google Scholar 

  32. Schaertl, S., Meyer-Almes, F.J., Lopez-Calle, E., Siemers, A., and Kramer, J. (2000) J. Biomol. Screen., 5, 227–237.

    Article  Google Scholar 

  33. Klumpp, M., Scheel, A., Lopez-Calle, E., Busch, M., Murray, K.J., and Pope, A.J. (2001) J. Biomol. Screen., 6, 159–170.

    Article  Google Scholar 

  34. Laurence, T.A., Kapanidis, A.N., Kong, X.X., Chemla, D.S., Weiss, S. (2004) J. Phys. Chem. B, 108, 3051–3067.

    Article  Google Scholar 

  35. Korlach, J., Schwille, P., Webb, W.W., and Feigenson, G.W. (1999) PNAS, 96, 8461–8466.

    Article  ADS  Google Scholar 

  36. Schwille, P., Haupts, U., Maiti, S., and Webb, W.W. (1999) Biophys. J., 77, 2251–2265.

    Article  Google Scholar 

  37. Dittrich, P.S. and Schwille, P. (2001) Appl. Phys., 73, 829–837.B

    Article  Google Scholar 

  38. Magde, D., Webb, W.W., and Elson, E.L. (1978) Biopolymers, 17, 361–376.

    Article  Google Scholar 

  39. Köhler, R.H., Schwille, P., Webb, W.W., and Hanson, M.R. (2000) J. Cell. Sci., 113, 3921–3930.

    Google Scholar 

  40. Kinjo, M. and Rigler, R. (1995) Nucleic Acids Res., 23, 1795–1799.

    Article  Google Scholar 

  41. Schwille, P., Oehlenschläger, F., and Walter, N.G. (1996) Biochemistry, 35, 10182–10193.

    Article  Google Scholar 

  42. Schuler, J., Frank, J., Trier, U., Schafer-Korting, M., and Saenger, W.A. (1999) Biochemistry, 38, 8402–8408.

    Article  Google Scholar 

  43. Wohland, T., Friedrich, K., Hovius, R., and Vogel, H. (1999) Biochemistry, 38, 8671–8681.

    Article  Google Scholar 

  44. Margeat, E. et al. (2001) J. Mol. Biol., 306, 433–442.

    Article  Google Scholar 

  45. Rigler, R. et al. (1999) PNAS USA, 96, 13318–13323.

    Article  ADS  Google Scholar 

  46. Pramanik, A. and Rigler, R. (2001) Biol. Chem., 382, 371–378.

    Article  Google Scholar 

  47. Borsch, M. et al. (1998) FEBS Lett., 437, 251–254.

    Article  Google Scholar 

  48. Thompson, N.L., Burghardt, T.P., and Axelrod, D. (1981) Biophys. J., 33, 435–454.

    Article  Google Scholar 

  49. Thompson, N.L. (1982) Biophys. J., 38, 327–329.

    Article  ADS  Google Scholar 

  50. Thompson, N.L. and Axelrod, D. (1983) Biophys. J., 43, 103–114.

    Article  Google Scholar 

  51. Starr, T.E. and Thompson, N.L. (2002) J. Phys. Chem. B, 106, 2365–2371.

    Article  Google Scholar 

  52. Starr, T.E. and Thompson, N.L. (2001) Biophys. J., 80, 1575–1584.

    Article  Google Scholar 

  53. Lieto, A.M., Cush, R.C., and Thompson, N.L. (2003) Biophys. J., 85, 3294–3302.

    Article  ADS  Google Scholar 

  54. Kettling, U., Koltermann, A., Schwille, P., and Eigen, M. (1998) PNAS, 95, 1416–1420.

    Article  ADS  Google Scholar 

  55. Koltermann, A., Kettling, U., Bieschke, J., Winkler, T., and Eigen, M. (1998) PNAS, 95, 1421–1426.

    Article  ADS  Google Scholar 

  56. Xu, C. and Webb, W.W. (1997) Multiphoton excitation of molecular fluorophores and nonlinear laser microscopy. In Lakowicz, J.R. (ed.), Topics in Fluorescence Spectroscopy, Vol. 5, pp. 471–540. Plenum Press, New York.

    Chapter  Google Scholar 

  57. Heinze, K.G., Koltermann, A., and Schwille, P. (2000) PNAS, 97, 10377–10382.

    Article  ADS  Google Scholar 

  58. Heinze, K.G., Jahnz, M., and Schwille, P. (2004) Biophys. J., 86, 506–516.

    Article  ADS  Google Scholar 

  59. Amediek, A., Haustein, E., Scherfeld, D., and Schwille, P. (2002) Single Mol., 3, 201–210.

    Article  ADS  Google Scholar 

  60. Widengren, J., Dapprich, J., and Rigler, R. (1997) Chem. Phys., 216, 417–426.

    Article  Google Scholar 

  61. Edman, L., Mets, U., and Rigler, R. (1996) PNAS, 93, 6710–6715.

    Article  ADS  Google Scholar 

  62. Haupts, U., Maiti, S., Schwille, P., and Webb, W.W. (1998) PNAS, 95, 13573–13578.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this entry

Cite this entry

Haustein, E., Schwille, P. (2008). Fluorescence Correlation Spectroscopy. In: Borsali, R., Pecora, R. (eds) Soft Matter Characterization. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4465-6_11

Download citation

Publish with us

Policies and ethics