Advertisement

Fluorescence Photobleaching Recovery

A Primer
  • P. S. Russo
  • J. Qiu
  • N. Edwin
  • Y. W. Choi
  • G. J. Doucet
  • D. Sohn
Reference work entry

1 Introduction

If one observes a fluorescent sample in a standard epifluorescence microscope using a 40× objective for a long time, and then switches to a 10× objective, it may appear that a dark hole has been burned into the sample. Over a sufficiently long period, fluorescence may return to the dark spot. Such a series of observations appears in Figure 10-1. The hole appeared because of photobleaching, the (usually) permanent destruction of fluorophores upon exposure to the bright light that was focused onto the sample by the 40× objective. The return of fluorescence to the spot is caused by diffusive exchange between the bleached molecules and unbleached molecules in the rest of the sample. If one were to switch in a 5× objective, it might be observed that even the 10× objective had caused some photobleaching during the observation of the recovery.

Keywords

Mutual Diffusion Coefficient Triangle Wave Optical Tracer Force Rayleigh Scattering Label Macromolecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No. DMR-0075810 and by the National Institutes of Health Grant AG17983. Y. Choi and D. Sohn acknowledge the support of the Korean Science and Engineering Foundation, Grant M07-2003-000-20143-0. N. Edwin was supported as an NSF-IGERT fellow (DGE-9987603) during the preparation of this article. Paul Russo expresses gratitude to Professors Daniel Axelrod and Ben Ware for their help many years ago when this laboratory was establishing FPR capabilities.

References

  1. 1.
    Peters, R., Peters, J., Tews, K.H., Bahr, W. (1974) Biochem. Biophys. Acta, 367, 282.CrossRefGoogle Scholar
  2. 2.
    Axelrod, D., Koppel, D.E., Schlessinger, J., Elson, E.L., Webb, W.W. (1976) Biophys. J., 16, 1055.ADSCrossRefGoogle Scholar
  3. 3.
    Koppel, D.E., Axelrod, D., Schlessinger, J., Elson, E.L., Webb, W.W. (1976) Biophys. J., 16, 1315.CrossRefGoogle Scholar
  4. 4.
    Schlessinger, J., Koppel, D.E., Axelrod, D., Jacobson, K., Webb, W.W., Elson, E.L. (1976) Proc. Natl. Acad. Sci. USA, 73, 2409.ADSCrossRefGoogle Scholar
  5. 5.
    Smith, B.A. and McConnell, H.M. (1978) Proc. Natl. Acad. Sci. U.S.A., 75, 2759.ADSCrossRefGoogle Scholar
  6. 6.
    Smith, L.M., Parce, J.W., Smith, B.A., McConnell, H.M. (1979) Proc. Natl. Acad. Sci. USA, 76, 4177.ADSCrossRefGoogle Scholar
  7. 7.
    Poo, M.M. and Cone, R.A. (1974) Nature, (London, United Kingdom), 247, 438.ADSCrossRefGoogle Scholar
  8. 8.
    Fluorophores are also chromophores, which has undesirable consequences to acronym euphony.Google Scholar
  9. 9.
    Kovaleski, J.M. and Wirth, M.J. (1997) Anal. Chem., 69(19), 600A.CrossRefGoogle Scholar
  10. 10.
    Langevin, D. (1996) Berichte der Bunsen-Gesellschaft, 100(3), 336.CrossRefGoogle Scholar
  11. 11.
    McNally, J.G. and Smith, C.L. (2002) Photobleaching by Confocal Microscopy. In Diaspro, A. (ed.), Confocal and Two-Photon Microscopy, Wiley-Liss, New York, p. 525.Google Scholar
  12. 12.
    Meyvis, T.K.L., De Smedt, S.C., Van Oostveldt, P., Demeester, J. (1999) Pharm. Res., 16(8), 1153.CrossRefGoogle Scholar
  13. 13.
    Robinson, J.P. (2001) Methods Cell Biol., 63, 89.CrossRefGoogle Scholar
  14. 14.
    Verkman, A.S. (2003) Methods Enzymol. 360 [Biophotonics, Part A], 635.CrossRefGoogle Scholar
  15. 15.
    Johnson, C.S. Jr. (1999) Prog. Nucl. Magn. Reson. Spectrosc., 34, 203.ADSCrossRefGoogle Scholar
  16. 16.
    Cicerone, M.T., Blackburn, F.R., Ediger, M.D. (1995) Macromolecules, 28, 8225.ADSCrossRefGoogle Scholar
  17. 17.
    Some things that exhibit fluorescence: white paper; glass coverslips; the purest commercially available solvents.Google Scholar
  18. 18.
    Busch, N.A., Kim, T., Bloomfield, V.A. (2000) Macromolecules, 33(16), 5932.ADSCrossRefGoogle Scholar
  19. 19.
    Cinelli, R.A.G., Ferrari, A., Pellegrini, V., Tyagi, M., Giacca, M., Beltram, F. (2000) Photochem. Photobiol., 71(6), 771.CrossRefGoogle Scholar
  20. 20.
    Mullineaux, C.W. and Sarcina, M. (2002) Spec. Pub. Royal Soc. Chem., 283, 237.Google Scholar
  21. 21.
    Reits, E.A.J. and Neefjes, J.J. (2001) Nat. Cell Biol., 3(6), E145–E147.CrossRefGoogle Scholar
  22. 22.
    Sarcina, M., Tobin, M.J., Mullineaux, C.W. (2001) J. Biol. Chem., 276(50), 46830.CrossRefGoogle Scholar
  23. 23.
    Sarcina, M., Murata, N., Tobin, M.J., Mullineaux, C.W. (2003) FEBS Lett., 553(3), 295.CrossRefGoogle Scholar
  24. 24.
    Swaminathan, R., Hoang, C.P., Verkman, A.S. (1997) Biophys. J., 72(4), 1900.CrossRefGoogle Scholar
  25. 25.
    Van Drogen, F. and Peter, M. (2004) Methods Mol. Biol. (Clifton, N. J.), 284, 287.Google Scholar
  26. 26.
    Molecular Probes: http://www.probes.com.
  27. 27.
    Leveraging chemical hubris may help. Molecular Probes said that labeling a particularly unreactive polymer would be impossible. That was enough to pique the interest of two local synthetic chemists, who allowed it would be “difficult.” When told of this, a third scoffed “no problem” and did it.Google Scholar
  28. 28.
    Hyuk Yu, personal communication.Google Scholar
  29. 29.
    Cong, R., Turksen, S., Russo, P.S. (2004) Macromolecules, 37, 4731.ADSCrossRefGoogle Scholar
  30. 30.
    Landgrebe, J.A. (1973) Theory and Practice in the Organic Laboratory. D.C. Heath and Company, Lexington, MA.Google Scholar
  31. 31.
    Liu, J., Hsieh, Y.-Z., Wiesler, D., Novotny, M. (1991) Anal. Chem., 63, 408.CrossRefGoogle Scholar
  32. 32.
    Chang, T. and Yu, H. (1984) Ch. 4 Data analysis in dynamic light scattering, Macromolecules, 17, 115.ADSCrossRefGoogle Scholar
  33. 33.
    Mustafa, M. (1990) PhD Thesis, Louisiana State University.Google Scholar
  34. 34.
    Doucet, G. (2004) PhD Thesis, Louisiana State University.Google Scholar
  35. 35.
    Kao, H.P. and Verkman, A.S. (1996) Biophys. Chem., 59(1–2), 203.Google Scholar
  36. 36.
    Lanni, F. and Ware, B.R. (1981) Photochem. Photobiol., 34, 279.Google Scholar
  37. 37.
    Periasamy, N., Bicknese, S., Verkman, A.S. (1996) Photochem. Photobiol., 63(3), 265.CrossRefGoogle Scholar
  38. 38.
    Stout, A.L. and Axelrod, D. (1995) Photochem. Photobiol., 62(2), 239.CrossRefGoogle Scholar
  39. 39.
    Afdhal, N.H., Cao, X., Bansil, R., Hong, Z., Thompson, C., Brown, B., Wolf, D. (2004) Biomacromolecules, 5(2), 269.CrossRefGoogle Scholar
  40. 40.
    Smith-Wright, L. (2000) PhD Thesis, Louisiana State University.Google Scholar
  41. 41.
    Klein, C., Pillot, T., Chambaz, J., Drouet, B. (2003) Brain Res. Protoc., 11(1), 46.CrossRefGoogle Scholar
  42. 42.
    Yguerabide, J., Schmidt, J.A., Yguerabide, E.E. (1982) Biophys. J., 39, 69.CrossRefGoogle Scholar
  43. 43.
    Soumpasis, D.M. (1983) Biophys. J., 41, 95.ADSCrossRefGoogle Scholar
  44. 44.
    The quadratic increase in the decay rate of successively higher harmonics reflects the power law dependence of random walk diffusion. Since <(Δx)2> ∼ 2Dt, where Δx is the change in position and <···> signifies an ensemble average over many random walkers, a nine-fold increase in diffusion time accompanies a three-fold increase in the distance diffused.Google Scholar
  45. 45.
    Starr, T.E. and Thompson, N.L. (2002) Biophys. Chem., 97, 29.CrossRefGoogle Scholar
  46. 46.
    Lanni, F. and Ware, B.R. (1982) Rev. Sci. Instrum., 53(6), 905.ADSCrossRefGoogle Scholar
  47. 47.
    Sehgal, A. Seery, T.A.P. (2003) Macromolecules, 36, 10056.ADSCrossRefGoogle Scholar
  48. 48.
    Bu, Z. and Russo, P.S., Unpublished results.Google Scholar
  49. 49.
    Bu, Z. and Russo, P.S. (1994) Macromolecules, 27, 1187.ADSCrossRefGoogle Scholar
  50. 50.
    Kim, S. and Yu, H. (1992) J. Phys. Chem., 96, 4034.CrossRefGoogle Scholar
  51. 51.
    Koppel, D.E. (1972) J. Chem. Phys., 57, 4814.ADSCrossRefGoogle Scholar
  52. 52.
    Stepanek, P. (1993) In Brown, W. (ed.), Dynamic Light Scattering, The Method and Some Applications. Clarendon Press, Oxford, pp. 175–241.Google Scholar
  53. 53.
    Davoust, J., Devaux, P.F., Leger, L. (1982) EMBO J., 1, 1233.Google Scholar
  54. 54.
    Champion, D., Hervet, H., Blond, G., Simatos, D. (1995) J. Agric. Food Chem., 43, 2887.CrossRefGoogle Scholar
  55. 55.
    Munnelly, H.M., Roess, D.A., Wade, W.F., Barisas, B.G. (1998) Biophys. J., 75(2), 1131.ADSCrossRefGoogle Scholar
  56. 56.
    Davis, S.K. and Bardeen, C.J. (2002) Rev. Sci. Instrum., 73(5), 2128.ADSCrossRefGoogle Scholar
  57. 57.
    Fong, B., Stryjewski, W., Russo, P.S. (2001) J. Coll. Int. Sci., 239, 374.CrossRefGoogle Scholar
  58. 58.
    Ekani-Nkodo, A. and Tinland, B. (2003) Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 67(5 Pt 1), 051920.ADSCrossRefGoogle Scholar
  59. 59.
    Sohn, D., Russo, P.S., Davila, A., Poche, D.S., McLaughlin, M.L. (1996) J. Coll. Int. Sci., 177, 31.CrossRefGoogle Scholar
  60. 60.
    Cong, R., Pelton, R., Russo, P.S., Doucet, G. (2003) Macromolecules, 36, 204.ADSCrossRefGoogle Scholar
  61. 61.
    Bu, Z., Russo, P.S., Tipton, D.L., Negulescu, I.I. (1994) Macromolecules, 27, 6871.ADSCrossRefGoogle Scholar
  62. 62.
    Tinland, B., Maret, G., Rinaudo, M. (1990) Macromolecules, 23, 596.ADSCrossRefGoogle Scholar
  63. 63.
    Scalettar, B.A., Hearst, J.E., Klein, M.P. (1989) Macromolecules, 22, 4550.ADSCrossRefGoogle Scholar
  64. 64.
    Robeson, J.L. and Tilton, R.D. (1995) Biophys. J., 68(5), 2145.ADSCrossRefGoogle Scholar
  65. 65.
    Hardingham, T., Heng, B.C., Gribbon, P. (1999) Biochem. Soc. Trans., 27(2), 124.Google Scholar
  66. 66.
    Kluijtmans, S.G.J.M., Dhont, J.K.G., Philipse, A.P. (1997) Langmuir, 13, 4982.CrossRefGoogle Scholar
  67. 67.
    Kluijtmans, S.G.J.M. and Philipse, A.P. (1999) Langmuir, 15(6), 1896.CrossRefGoogle Scholar
  68. 68.
    Kluijtmans, S.G.J.M., Koenderink, G.H., Philipse, A.P. (2000) Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, 61, 626.CrossRefGoogle Scholar
  69. 69.
    Kluijtmans, S.G.J.M., de Hoog, E.H.A., Philipse, A.P. (1998) J. Chem. Phys., 108(17), 7469.ADSCrossRefGoogle Scholar
  70. 70.
    Contreras-Lopez, E., Champion, D., Hervet, H., Blond, G., Le Meste, M. (2000) J. Agric. Food Chem., 48(4), 1009.CrossRefGoogle Scholar
  71. 71.
    Johnson, E.M., Berk, D.A., Jain, R.K., Deen, W.M. (1995) Biophys. J., 68, 1561.CrossRefGoogle Scholar
  72. 72.
    Johnson, E.M., Berk, D.A., Jain, R.K., Deen, W.M. (1996) Biophys. J., 70, 1017.ADSCrossRefGoogle Scholar
  73. 73.
    Pluen, A., Boucher, Y., Ramanujan, S., McKee, T.D., Gohongi, T., Di Tomaso, E., Brown, E.B., Izumi, Y., Campbell, R.B., Berk, D.A., Jain, R.K. (2001) Gelation and Critical Phenomena, Proc. Nat. Acad. Sci. USA, 98, 4628.ADSCrossRefGoogle Scholar
  74. 74.
    Ramanujan, S., Pluen, A., McKee, T.D., Brown, E.B., Boucher, Y., Jain, R.K. (2002) Biophys. J., 83, 1650.ADSCrossRefGoogle Scholar
  75. 75.
    Cheng, Y., Prud’homme, R.K., Thomas, J. (2002) Macromolecules, 35, 8111.ADSCrossRefGoogle Scholar
  76. 76.
    Olmsted, S.S., Padgett, J.L., Yudin, A.I., Whaley, K.J., Moench, T.R., Cone, R.A. (2001) Biophys. J., 81(4), 1930.CrossRefGoogle Scholar
  77. 77.
    Brown, E.B., Boucher, Y., Nasser, S., Jain, R.K. (2004) Microvasc. Res., 67(3), 231.CrossRefGoogle Scholar
  78. 78.
    Ho, A.K., Bromberg, L.E., O’Connor, A.J., Perera, J.M., Stevens, G.W., Hatton, T.A. (2001) Langmuir, 17(12), 3538.CrossRefGoogle Scholar
  79. 79.
    Blum, F.D. (1986) Spectroscopy, 1(5), 32.Google Scholar
  80. 80.
    Wang, Z. and Chu, B. (1990) Biopolymers, 29(3), 491.MathSciNetCrossRefGoogle Scholar
  81. 81.
    Pluen, A., Tinland, B., Sturm, J., Weill, G. (1998) Electrophoresis, 19, 1548.CrossRefGoogle Scholar
  82. 82.
    Mustafa, M.B., Tipton, D.L., Barkley, M.D., Russo, P.S., Blum, F.D. (1993) Macromolecules, 26, 370.ADSCrossRefGoogle Scholar
  83. 83.
    Constantin, D. and Oswald, P. (2000) Phys. Rev. Lett., 85(20), 4297.ADSCrossRefGoogle Scholar
  84. 84.
    Etchegoin, P. (1999) Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, 59(2-A), 1860.CrossRefGoogle Scholar
  85. 85.
    Russo, P.S., Baylis, M., Bu, Z., Stryjewski, W., Doucet, G., Temyanko, E., Tipton, D. (1999) J. Chem. Phys., 111, 1746.ADSCrossRefGoogle Scholar
  86. 86.
    van Bruggen, M., Lekkerkerker, H.N.W., Maret, G., Dhont, J.K.G. (1998) Phys. Rev, E 58, 7668.ADSCrossRefGoogle Scholar
  87. 87.
    Mustafa, M.B., Tipton, D., Russo, P.S. (1989) Macromolecules, 22, 1500.ADSCrossRefGoogle Scholar
  88. 88.
    Mustafa, M. and Russo, P.S. (1989) J. Coll. Int. Sci., 129, 240.CrossRefGoogle Scholar
  89. 89.
    Schmidtke, S., Russo, P.S., Nakamatsu, J., Buyuktanir, E., Turfan, B., Temyanko, E., Negulescu, I. (2000) Macromolecules, 33, 4427.ADSCrossRefGoogle Scholar
  90. 90.
    Wu, C., Schrof, W., Lilge, D. (1991) Colloid Polym. Sci., 269(7), 682.CrossRefGoogle Scholar
  91. 91.
    Wu, C., Schrof, W., Luddecke, E., Horn, D. (1991) Colloid Polym. Sci., 269, 523.CrossRefGoogle Scholar
  92. 92.
    Stauffer, D., Coniglio, A., Adam, M. (1982) In Dusek, K. (ed.), Polymer Networks, Advances in Polymer Science, vol 44. Springer-Verlag, Berlin, pp 103–158.CrossRefGoogle Scholar
  93. 93.
    Ren, S.Z. and Sorensen, C.M. (1993) Phys. Rev. Lett., 70, 1727.ADSCrossRefGoogle Scholar
  94. 94.
    Yamakawa, H. (1971) Modern Theory of Polymer Solutions. Harper and Row, New York.Google Scholar
  95. 95.
    Schmitz, K.S. (1994) In An Overview of Polyelectrolytes, Schmitz, K.S. (ed.), Macro-Ion Characterization from Dilute Solutions to Complex Fluids, ACS Symposium Series 548. American Chemical Society, Washington, DC, pp. 1–22.Google Scholar
  96. 96.
    Schmitz, K.S., Lu, M., Singh, N., Ramsay, D.J. (1984) Biopolymers, 23, 1637.CrossRefGoogle Scholar
  97. 97.
    Sedlak, M. (1999) Langmuir, 15, 4045.CrossRefGoogle Scholar
  98. 98.
    Yu, K. and Russo, P.S. (1996) J. Polym. Sci. Polym. Phys., 34, 1467.ADSCrossRefGoogle Scholar
  99. 99.
    Zero, K. and Ware, B.R. (1984) J. Chem. Phys., 80, 1610.ADSCrossRefGoogle Scholar
  100. 100.
    Wattenbarger, M.R., Bloomfield, V.A., Bu, Z., Russo, P.S. (1992) Macromolecules, 25, 5263.ADSCrossRefGoogle Scholar
  101. 101.
    Yang, Z. and Yu, H. (1999) Langmuir, 15(5), 1731.CrossRefGoogle Scholar
  102. 102.
    Feder, T.J., Brust-Mascher, I., Slattery, J.P., Baird, B., Webb, W.W. (1996) Biophys. J., 70(6), 2767.ADSCrossRefGoogle Scholar
  103. 103.
    Ma, C., Srinivasan, M.P., Waring, A.J., Lehrer, R.I., Longo, M.L., Stroeve, P. (2003) Colloids Surf. B Biointerfaces, 28(4), 319.CrossRefGoogle Scholar
  104. 104.
    Ratto, T.V. and Longo, M.L. (2003) Langmuir, 19(5), 1788.CrossRefGoogle Scholar
  105. 105.
    Ratto, T.V. and Longo, M.L. (2002) Biophys. J., 83(6), 3380.ADSCrossRefGoogle Scholar
  106. 106.
    Wang, L., Schoenhoff, M., Moehwald, H. (2002) J. Phys. Chem. B, 106(35), 9135.CrossRefGoogle Scholar
  107. 107.
    Wang, L., Schoenhoff, M., Moehwald, H. (2004) J. Phys. Chem. B, 108(15), 4767.CrossRefGoogle Scholar
  108. 108.
    Zhang, L., Longo, M.L., Stroeve, P. (2000) Abstr. Pap. Am. Chem. Soc., 220, 208.Google Scholar
  109. 109.
    Zhang, L., Longo, M.L., Stroeve, P. (2000) Langmuir, 16(11), 5093.CrossRefGoogle Scholar
  110. 110.
    Gajraj, A. and Ofoli, R.Y. (2000) Langmuir, 16(21), 8085.CrossRefGoogle Scholar
  111. 111.
    Brown, E.B., Wu, E.S., Zipfel, W., Webb, W.W. (1999) Biophys. J., 77(5), 2837.CrossRefGoogle Scholar
  112. 112.
    Stroh, M., Zipfel, W.R., Williams, R.M., Webb, W.W., Saltzman, W.M. (2003) Biophys. J., 85(1), 581.CrossRefGoogle Scholar
  113. 113.
    Zipfel, W.R. and Webb, W.W. (2001) Methods in Cellular Imaging. In Periasamy, A. In vivo diffusion measurements using multiphoton excited fluorescence photobleaching recovery (MPFPR) and fluorescence correlation spectroscopy (MPFCS), Oxford University Press, Oxford, UK, pp. 216–235.Google Scholar
  114. 114.
    Saxton, M.J. (2001) Biophys. J., 81(4), 2226.ADSCrossRefGoogle Scholar
  115. 115.
    Coelho, F.P., Vaz, W.L., Melo, E. (1997) Biophys. J., 72(4), 1501.CrossRefGoogle Scholar
  116. 116.
    Vaz, W.L.C. (1995) Mol. Membr. Biol., 12(1), 39.CrossRefGoogle Scholar
  117. 117.
    Yang, Z., Galloway, J.A., Yu, H. (1999) Langmuir, 15(24), 8405.CrossRefGoogle Scholar
  118. 118.
    Frank, B., Gast, A.P., Russell, T.P., Brown, H.R., Hawker, C. (1996) Macromolecules, 29(20), 6531.ADSCrossRefGoogle Scholar
  119. 119.
    Tseng, K.C., Turro, N.J., Durning, C.J. (2000) Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdisc. Topics, 61(2), 1800.Google Scholar
  120. 120.
    Tseng, K.C., Turro, N.J., Durning, C.J. (2000) Polymer, 41(12), 4751.CrossRefGoogle Scholar
  121. 121.
    Hansen, R.L. and Harris, J.M. (1995) Anal. Chem., 67(3), 492.CrossRefGoogle Scholar
  122. 122.
    Hansen, R.L. and Harris, J.M. (1996) Anal. Chem., 68(17), 2879.CrossRefGoogle Scholar
  123. 123.
    Picart, C., Richert, L., Boulmedais, F., Schaaf, P., Voegel, J.C. (2004) Materials Research Society Symposium Proceedings EXS-1 [Architecture and Application of Biomaterials and Biomolecular Materials], 29.Google Scholar
  124. 124.
    Richert, L., Boulmedais, F., Lavalle, P., Mutterer, J., Ferreux, E., Decher, G., Schaaf, P., Voegel, J.C., Picart, C. (2004) Biomacromolecules, 5(2), 284.CrossRefGoogle Scholar
  125. 125.
    Szyk, L., Schaaf, P., Gergely, C., Voegel, J.C., Tinland, B. (2001) Langmuir, 17(20), 6248.CrossRefGoogle Scholar
  126. 126.
    Adalsteinsson, T. and Yu, H. (2000) Langmuir, 16(24), 9410.CrossRefGoogle Scholar
  127. 127.
    Tanaka, K., Mecca, S.P., Yu, H. (2000) Langmuir, 16(6), 2672.CrossRefGoogle Scholar
  128. 128.
    Tanaka, K., Manning, P.A., Lau, V.K., Yu, H. (1999) Langmuir, 15(2), 600.CrossRefGoogle Scholar
  129. 129.
    Tanaka, K. and Yu, H. (2003) ACS Symp. Ser. 840, 57.CrossRefGoogle Scholar
  130. 130.
    Mullineaux, C.W. (2004) J. Exp. Bot., 55(400), 1207.CrossRefGoogle Scholar
  131. 131.
    Lalchev, Z., Todorov, R., Ishida, H., Nakazawa, H. (1995) Eur. Biophys. J., 23(6), 433.CrossRefGoogle Scholar
  132. 132.
    Lalchev, Z.I., Todorov, R.K., Christova, Y.T., Wilde, P.J., Mackie, A.R., Clark, D.C. (1996) Biophys. J., 71(5), 2591.CrossRefGoogle Scholar
  133. 133.
    Lalchev, Z.I., Wilde, P.J., Mackie, A.R., Clark, D.C. (1995) J. Coll. Int. Sci., 174(2), 283.CrossRefGoogle Scholar
  134. 134.
    Leger, L., Hervet, H., Pit, R. (2001) ACS Symp. Ser. 781, 154.CrossRefGoogle Scholar
  135. 135.
    Leger, L., Hervet, H., Charitat, T., Koutsos, V. (2001) Adv. Coll. Int. Sci., 94(1–3), 39.CrossRefGoogle Scholar
  136. 136.
    Birmingham, J.J., Hughes, N.P., Treloar, R. (1995) Philos. Trans. R. Soc. Lond B Biol. Sci., 350(1334), 325.ADSCrossRefGoogle Scholar
  137. 137.
    Axelrod, D. (1989) Methods Cell Biol., 30, 333.CrossRefGoogle Scholar
  138. 138.
    Velez, M. and Axelrod, D. (1988) Biophys. J., 53, 575.ADSCrossRefGoogle Scholar
  139. 139.
    Ediger, M.D., Inoue, T., Cicerone, M.T., Blackburn, F.R. (1996) Macromol. Symp., 101, 139.CrossRefGoogle Scholar
  140. 140.
    Cicerone, M.T. and Ediger, M.D. (1993) J. Phys. Chem., 97, 10489.CrossRefGoogle Scholar
  141. 141.
    Lettinga, M.P., Koenderink, G.H., Kuipers, B.W.M., Bessels, E., Philipse, A.P. (2004) J. Chem. Phys., 120, 4517.ADSCrossRefGoogle Scholar
  142. 142.
    Dzakpasu, R. and Axelrod, D. (2004) Biophys. J., 87, 1279.CrossRefGoogle Scholar
  143. 143.
    Dzakpasu, R. and Axelrod, D. (2004) Biophys. J., 87, 1288.CrossRefGoogle Scholar
  144. 144.
    Cong, R., Temyanko, E., Russo, P.S., Edwin, N., Uppu, R. (2006) Macromolecules, 39, 731.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • P. S. Russo
    • 1
  • J. Qiu
    • 2
  • N. Edwin
    • 3
  • Y. W. Choi
    • 4
  • G. J. Doucet
    • 5
  • D. Sohn
    • 6
  1. 1.Louisiana State University Baton RangeLAUSA
  2. 2.Louisiana State University Baton RangeLAUSA
  3. 3.Louisiana State University Baton RangeLAUSA
  4. 4.Hanyang University SeoulSeoulSouth Korea
  5. 5.Louisiana State University Baton RangeLAUSA
  6. 6.Hanyang University SeoulSeouiSouth Korea

Personalised recommendations