Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Anderson, D.L., 2000. The thermal state of the upper mantle: no role for mantle plumes. Geophysical Research Letters, 27: 3623–3626.

    Article  Google Scholar 

  • Andrews, J.A., 1985. True polar wander: an analysis of Cenozoic and Mesozoic paleomagnetic poles. Journal of Geophysical Research, 90: 7737–7750.

    Google Scholar 

  • Besse, J., and Courtillot, V., 1988. Paleogeographic maps of the Indian Ocean bordering continents since the Upper Jurassic. Journal of Geophysical Research, 93: 11791–11808.

    Google Scholar 

  • Besse, J., and Courtillot, V., 1991. Revised and synthetic polar wander paths of the African, Eurasian, North American and Indian plates, and true polar wander since 200 Ma. Journal of Geophysical Research, 96: 4029–4050.

    Article  Google Scholar 

  • Besse, J., and Courtillot, V., 2002. Apparent and true polar wander and the geometry of the geomagnetic field in the last 200 million years. Journal of Geophysical Research, 107. doi:10.1029/2000JB000050.

    Google Scholar 

  • Besse, J., and Courtillot, V., 2003. Correction to “Apparent and true polar wander and the geometry of the geomagnetic field in the last 200 million years. Journal of Geophysical Research, 107. doi:10.1029/2000JB000050, 2002”, Journal of Geophysical Research, 108. doi:10.1029/2003JB002684.

    Google Scholar 

  • Brunet, D., and Machetel, P., 1998. Large‐scale tectonic features induced by mantle avalanches with phase, temperature and pressure lateral variations in viscosity. Journal of Geophysical Research, 103: 4929–4945.

    Article  Google Scholar 

  • Camps, P., Prévot, M., Daignières, M., and Machetel, P., 2002. Comment on stability of the earth with respect to the spin axis for the last 130 million years by J.A. Tarduno and A.Y. Smirnov (Earth and Planetary Science Letters 184(2001): 549–553), Earth and Planetary Science Letters, 198: 529–532.

    Article  Google Scholar 

  • Carlut, J., and Courtillot, V., 1998. How complex is the time‐averaged geomagnetic field over the past 5 Myr? Geophysical Journal International, 134: 527–544.

    Article  Google Scholar 

  • Chase, C.G., 1979. Subduction, the geoid, and lower mantle convection. Nature, 282: 464–468.

    Article  Google Scholar 

  • Clouard, V., and Bonneville, A., 2001. How many Pacific hotspots are fed by deep‐mantle plumes? Geology, 21: 695–698.

    Article  Google Scholar 

  • Constable, C.G., and Parker, R.L., 1988. Statistics of the geomagnetic secular variation for the past 5 Myr. Journal of Geophysical Research, 93: 11569–11581.

    Google Scholar 

  • Cottrell, R.D., and Tarduno, J.A., 2000. Late cretaceous True polar wander: not so fast. Science, 288: 2283a.

    Article  Google Scholar 

  • Courtillot, V., and Besse, J., 2004. A long‐term octupolar component in the geomagnetic field? (0–200 Million Years B.P.). Geophysical Monograph, 145, 59–74.

    Google Scholar 

  • Courtillot, V., Davaille, A., Besse, J., and Stock, J., 2003. Three distinct types of hotspots in the Earth's mantle. Earth and Planetary Science Letters, 205: 295–308.

    Article  Google Scholar 

  • Creer, K., Irving, E., and Runcorn, S.K., 1954. The direction of the geomagnetic field in remote epochs in Great Britain. Journal of Geomagnetism and Geoelectricity, 6: 163–168.

    Google Scholar 

  • Darwin, G., 1877. On the influence of geological changes on the earth's axis of rotation. Philosophical Transactions of the Royal Society of London, Series A, 167: 271–312.

    Article  Google Scholar 

  • Davies, G.F., 1988. Ocean bathymetry and mantle convection. 1. Large‐scale flow and hotspots. Journal of Geophysical Research, 90: 10467–10480.

    Google Scholar 

  • Di Venere, V., and Kent, D.V., 1999. Are the Pacific and Indo‐Atlantic hotspots fixed? Testing the plate circuit through Antarctica. Earth and Planetary Science Letters, 170: 105–117.

    Article  Google Scholar 

  • Engebretson, D.C., Cox, A., and Gordon, R.G., 1985. Relative motions between oceanic and continental plates in the Pacific Basin. Geological Society of America Special Paper, 206: 59.

    Google Scholar 

  • Evans, D., 1998. True polar wander, a supercontinental legacy. Earth and Planetary Science Letters, 157: 1–8.

    Article  Google Scholar 

  • Evans, D., 2003. True polar wander and supercontinents. Tectonophysics, 362: 303–320.

    Article  Google Scholar 

  • Fisher, D., 1974. Some more remarks on polar wandering. Journal of Geophysical Research, 79: 4041–4045.

    Google Scholar 

  • Gold, T., 1955. Instability of the Earth's axis of rotation. Nature, 175: 526–529.

    Article  Google Scholar 

  • Goldreich, P., and Toomre, A., 1969. Some remarks on polar wandering. Journal of Geophysical Research, 74: 2555–2567.

    Google Scholar 

  • Gordon, R.G., 1987. Polar wandering and paleomagnetism. Annual Reviews of Earth and Planetary Science, 15: 567–593.

    Article  Google Scholar 

  • Gordon, R.G., Horner‐Johnson, B.C., Petronotis, K., and Acton, G.D., 2004. Apparent polar wander of the Pacific plate and Pacific hotspots: implications for true polar wander and hotspot fixity. EOS, Transactions of the American Geophysical Union, Spring.

    Google Scholar 

  • Greff‐Lefftz, M., 2004. Upwelling plumes, superswells and true polar wander. Geophysical Journal International, 159: 1125–1137.

    Article  Google Scholar 

  • Gross, R.S., and Vondrak, J., 1999. Astrometric and space‐geodetic observations of polar wander. Geophysical Research Letters, 26: 2085–2088.

    Article  Google Scholar 

  • Hargraves, R.B., and Duncan, R.A., 1997. Does the mantle roll? Nature, 245: 361–363.

    Article  Google Scholar 

  • James, T.S., and Ivins, E.R., 1997. Global geodetic signatures of the Antarctic ice sheet. Journal of Geophysical Research, 102: 605–633.

    Article  Google Scholar 

  • Jurdy, D.M., 1981. True polar wander. Tectonophysics, 74: 1–16.

    Article  Google Scholar 

  • Jurdy, D.M., and Van der Voo, R., 1974. A method for the separation of polar wander and continental drift. Journal of Geophysical Research, 79: 2945–2952.

    Google Scholar 

  • Jurdy, D.M., and Van der Voo, R., 1975. True polar wander since the Early Cretaceous. Science, 187: 1193–1196.

    Article  Google Scholar 

  • Kent, D.V., and Smethurst, M.A., 1998. Shallow bias of paleomagnetic inclinations in the Paleozoic and Precambrian. Earth and Planetary Science Letters, 160: 391–402.

    Article  Google Scholar 

  • Kirschvink, J.L., Ripperdan, R.L., and Evans, D.A., 1997. Evidence for a large‐scale early Cambrian reorganization of continental masses by inertial interchange true polar wander. Science, 277: 541–545.

    Article  Google Scholar 

  • Koppers, A.A.P., Morgan, J.P., Morgan, J.W., and Staudigel, H., 2001. Testing the fixed hotspot hypothesis using 40Ar/39Ar age progressions along seamount trails. Earth and Planetary Science Letters, 185: 237–252.

    Article  Google Scholar 

  • Koppers, A.A.P., Duncan, R.A., and Steinberger, B., 2004. Implications of a non‐linear 40Ar/39Ar age progression along the Louisville seamount trail for models of fixed and moving hotspots. Geochemistry, Geophysics, Geosystems, 5. doi:10.1029/2003GC000671.

    Google Scholar 

  • Lambeck, K., 1980. The Earth's Variable Rotation: Geophysical Causes and Consequences. Cambridge: Cambridge University Press, 449 pp.

    Google Scholar 

  • Lambeck, K., and Johnston, P., 1998. The viscosity of the mantle: evidence from analyses of glacial rebound phenomena. In Jackson I. (ed.) The Earth's Mantle. Cambridge: Cambridge University Press, pp. 461–502.

    Google Scholar 

  • Livermore, R.A., Vine, F.J., and Smith, A.G., 1983. Plate motions and the geomagnetic field. I. Quaternary and late Tertiary. Geophysical Journal of the Royal Astronomical Society, 73: 153–171.

    Google Scholar 

  • Livermore, R.A., Vine, F.J., and Smith, A.G., 1984. Plate motions and the geomagnetic field. II. Jurassic to Tertiary. Geophysical Journal of the Royal Astronomical Society, 79: 939–961.

    Google Scholar 

  • Marcano, M.C., Van der Voo, R., and Mac Niocaill, C., 1999. True polar wander during the Permo‐Triassic. Journal of Geodynamics, 28: 75–95.

    Article  Google Scholar 

  • Markowitz, W., 1970. Sudden changes in rotational acceleration of the Earth and secular motion of the pole. In Mansinha, L., Smylie, D.E., and Beck, A.E. (eds.) Earthquake Displacement Fields and the Rotation of the Earth. New York: Springer, pp. 69–91.

    Google Scholar 

  • McCarthy, D.D., and Luzum, B.J., 1996. Path of the mean rotational pole from 1899 to 1994. Geophysical Journal International, 125: 623–629.

    Article  Google Scholar 

  • McElhinny, M.W., and McFadden, P.L., 2000. Paleomagnetism: continents and oceans. San Diego: Academic Press, 386 pp.

    Google Scholar 

  • McKenzie, D.P., 1972. Plate tectonics. In Robertson, E.C. (ed.) The Nature of the Solid Earth. McGraw‐Hill, New York: pp. 323–360.

    Google Scholar 

  • Mitrovica, J.X., and Milne, G.A., 1998. Glaciation‐induced perturbations in the Earth's rotation: a new appraisal. Journal of Geophysical Research, 103: 985–1005.

    Article  Google Scholar 

  • Montelli, R., Nolet, G., Dahlen, F.A., Masters, G., Engdahl, E.R., and Hung, S.H., 2004. Finite‐frequency tomography reveals a variety of plumes in the mantle. Science, 303: 338–343.

    Article  Google Scholar 

  • Morgan, W.J., 1972. Plate motions and deep mantle convection. Geological Society of America Memoir, 132: 7–22.

    Google Scholar 

  • Morgan, J.W., 1981. Hotspot tracks and the opening of the Atlantic and Indian oceans. In Emiliani, C. (ed.) The Sea, Volume 7. New York: Wiley, pp. 443–487.

    Google Scholar 

  • Morgan, W.J., 1983. Hotspot tracks and the early rifting of the Atlantic. Tectonophysics, 94: 123–139.

    Article  Google Scholar 

  • Müller, D.M., Royer, J.Y., and Lawver, L.A., 1993. Revised plate motions relative to the hotspots from combined Atlantic and Indian Ocean hotspot tracks. Geology, 275–278.

    Google Scholar 

  • Munk, W.H., and MacDonald, G.J.F., 1960. The Rotation of the Earth. Cambridge: Cambridge University Press, 323 pp.

    Google Scholar 

  • Norton, I.O., 1995. Plate motion in the North Pacific: the 43 Ma non‐event. Tectonics, 14: 1080–1094.

    Article  Google Scholar 

  • O'Connell, R.J., Gable, C.W., and Hager, B.H., 1991. Toroidal‐poloidal partitioning of lithospheric plate motions. In Sabadini, R., and Lambeck, K. (eds.) Glacial Isostasy, Sea Level and Mantle Rheology. Kluwer Academic Publishers, Dordrecht: pp. 535–551.

    Google Scholar 

  • Parker, R.L., 1991. A theory of ideal bodies for seamount magnetism. Journal of Geophysical Research, 96: 16101–16112.

    Google Scholar 

  • Patriat, P., and Achache, J., 1984. India‐Asia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature, 311: 615–621.

    Article  Google Scholar 

  • Petronotis, K.E., and Gordon, R.G., 1999. A Maastrichtian paleomagnetic pole for the Pacific plate from a skewness analysis of marine magnetic anomaly 32. Geophysical Journal International, 139: 227–247.

    Article  Google Scholar 

  • Prévot, M., Mattern, E., Camps, P., and Daignières, M., 2000. Evidence for a 20° tilting of the Earth's rotation axis 110 million years ago. Earth and Planetary Science Letters, 179: 517–528.

    Article  Google Scholar 

  • Quidelleur, X., Valet, J.P., Courtillot, V., and Hulot, G., 1994. Long‐term geometry of the geomagnetic field for the last five million years: an updated secular variation database. Geophysical Research Letters, 21: 1639–1642.

    Article  Google Scholar 

  • Raymond, C.A., Stock, J.M., and Cande, S.C., 2000. Fast Paleogene motion of the Pacific hotspots from revised global plate circuit constraints. The History and Dynamics of Global Plate Motions, Geophysical Monographs, 121: 359–375.

    Google Scholar 

  • Ricard, Y., Doglioni, C., and Sabadini, R., 1991. Differential rotation between lithosphere and mantle: a consequence of lateral mantle viscosity variations. Journal of Geophysical Research, 96: 8407–8416.

    Google Scholar 

  • Ricard, Y., Spada, G., and Sabadini, R., 1993a. Polar wandering of a dynamic Earth. Geophysical Journal International, 113: 284–298.

    Article  Google Scholar 

  • Ricard, Y., Richards, M., Lithgow‐Bertelloni, C., and Le Stunff, Y., 1993b. A geodynamic model of mantle density heterogeneity. Journal of Geophysical Research, 98: 21895–21909.

    Google Scholar 

  • Richards, M.A., Ricard, Y., Lithgow‐Bertelloni, C., Spada, G., and Sabadini, R., 1997. An explanation of the Earth's long‐term rotational stability. Science, 275: 372–375.

    Article  Google Scholar 

  • Richards, M.A., Bunge, H.P., Ricard, Y., and Baumgardner, J.R., 1999. Polar wandering in mantle convection models. Geophysical Research Letters, 26: 1777–1780.

    Article  Google Scholar 

  • Runcorn, S.K., 1956. Paleomagnetic comparisons between Europe and North America. Proceedings of the Geological Association of Canada, 8: 77–85.

    Google Scholar 

  • Sabadini, R., and Peltier, W.R., 1981. Pleistocenic deglaciation and the Earth's rotation: implications for mantle viscosity. Geophysical Journal of the Royal Astronomical Society, 66: 553–578.

    Google Scholar 

  • Sager, W.W., and Koppers, A.A.P., 2000. Late cretaceous polar wander of the Pacific plate: evidence of a rapid true polar wander event. Science, 287: 455–459.

    Article  Google Scholar 

  • Sager, W.W., and Pringle, S., 1988. Mid cretaceous to early tertiary apparent polar wander path of the Pacific Plate. Journal of Geophysical Research, 93: 11753–11771.

    Google Scholar 

  • Schneider, D.A., and Kent, D.V., 1990a. Paleomagnetism of Leg 115 sediments: implications for Neogene magnetostratigraphy and paleolatitude of the Reunion Hotspot. Proceedings of the Ocean Drilling Program, Scientific Results, 115: 717–36.

    Google Scholar 

  • Schneider, D.A., and Kent, D.V., 1990b. The time‐averaged paleomagnetic field. Reviews of Geophysics, 28: 71–96.

    Google Scholar 

  • Si, J., and Van der Voo, R., 2001. Too‐low magnetic inclinations in central Asia: an indication of a long‐term Tertiary non‐dipole field? Terra Nova, 13: 471–478.

    Article  Google Scholar 

  • Spada, G., Ricard, Y., and Sabadini, R., 1992. True polar wander for a dynamic Earth. Nature, 360: 452–454.

    Article  Google Scholar 

  • Spada, G., Sabadini, R., and Boschi, E., 1996a. The spin and inertia of Venus. Geophysical Research Letters, 23: 1997–2000.

    Article  Google Scholar 

  • Spada, G., Sabadini, R., and Boschi, E., 1996b. Long‐term rotation and mantle dynamics of the earth, Mars and Venus. Journal of Geophysical Research, 101: 2253–2266.

    Article  Google Scholar 

  • Steinbach, V., and Yuen, D.A., 1994. Effects of depth dependent properties on the thermal anomalies produced in flush instabilities from phase transitions. Physics of the Earth and Planetary Interiors, 86: 165–183.

    Article  Google Scholar 

  • Steinberger, B., 1996. Motions of hotspots and changes of the earth's rotation axis caused by a convecting mantle, Ph.D. thesis, 203 pp., Harvard University, Cambridge, MA.

    Google Scholar 

  • Steinberger, B., 2000. Plumes in a convecting mantle: models and observations for individual hotspots. Journal of Geophysical Research, 105: 11127–11152.

    Article  Google Scholar 

  • Steinberger, B.M., and O'Connell, R.J., 1997. Changes of the Earth's rotation axis inferred from advection of mantle density heterogeneities. Nature, 387: 169–173.

    Article  Google Scholar 

  • Steinberger, B., and O'Connell, R.J., 2000. Effects of mantle flow on hotspot motions. In Richards, M., Gordon, R., and van der Hilst, R. (eds.), The History and Dynamics of Global Plate Motions, Geophysical Monograph, Volume 121, pp. 377–398.

    Google Scholar 

  • Steinberger, B., and O'Connell, R.J., 2002. The convective mantle flow signal in rates of true polar wander. In Mitrovica, J., and Vermeersen, L. (eds.) Ice Sheets, Sea‐Level and the Dynamic Earth Geodynamic Series, Volume 29. AGU, Washington, DC: pp. 233–256.

    Google Scholar 

  • Steinberger, B., Sutherland, R., and O'Connell, R., 2004. Prediction of Emperor‐Hawaii seamount locations from a revised model of plate motion and mantle flow. Nature, 430: 167–173.

    Article  Google Scholar 

  • Tarduno, J.A., and Cottrell, R.D., 1997. Paleomagnetic evidence for motion of the Hawaiian hotspot during formation of the Emperor Seamounts. Earth and Planetary Science Letters, 153: 171–180.

    Article  Google Scholar 

  • Tarduno, J.A., and Gee, J., 1995. Large‐scale motion between Pacific and Atlantic hotspots. Nature, 378: 477–480.

    Article  Google Scholar 

  • Tarduno, J.A., and Smirnov, A.V., 2001. Stability of the Earth with respect to the spin axis for the last 130 million years. Earth and Planetary Science Letters, 184: 549–553.

    Article  Google Scholar 

  • Tarduno, J.A., and Smirnov, A.V., 2002. Response to comment on “Stability of the Earth with respect to the spin axis for the last 130 Million Years” by Camps, P., Prévot, M., Daignieres, M., and Machetel, P., Earth and Planetary Science Letters, 198: 533–539.

    Article  Google Scholar 

  • Tarduno, J.A., Duncan, R.A., Scholl, D.W., Cottrell, R., Steinberger, B., et al. 2003. The Emperor seamounts: southward motion of the Hawaiian hotspot plume in Earth's mantle. Science, 301: 1064–1069.

    Article  Google Scholar 

  • Torsvik, T.H., and Van der Voo, R., 2002. Refining Gondwana and Pangea paleogeography: estimates of Phanerozoic non‐dipole (octupole) fields. Geophysical Journal International, 151: 771–794.

    Article  Google Scholar 

  • Torsvik, T.H., Van der Voo, R., and Redfield, T.F., 2002. Relative hotspot motions versus true polar wander. Earth and Planetary Science Letters, 202: 185–200.

    Article  Google Scholar 

  • Van der Voo, R., 1994. True polar wander during the mid‐Paleozoic? Earth and Planetary Science Letters, 122: 239–243.

    Article  Google Scholar 

  • Van der Voo, R., and Torsvik, T.H., 2001. Evidence for late Paleozoic and Mesozoic non‐dipole fields provides an explanation for the Pangea reconstruction problems. Earth and Planetary Science Letters, 187: 71–81.

    Article  Google Scholar 

  • Weinstein, S.A., 1993. Catastrophic overturn of the Earth's mantle driven by multiple phase changes and internal heat generation. Geophysical Research Letters, 20: 101–104.

    Google Scholar 

  • Wilson, R.L., 1970. Permanent aspects of the Earth's non‐dipole magnetic field over Upper Tertiary Times. Geophysical Journal of the Royal Astronomical Society, 19: 417–37.

    Google Scholar 

Download references

Acknowledgments

I am thankful to Emilio Herrero‐Bervera and David Gubbins for inviting this contribution. I am particularly thankful to J. Besse, A. Cazenave, R. Gordon, M. Greff‐Lefftz, K. Lambeck, J. Laskar, J.L. Le Mouël, M. McElhinny, R. O'Connell, J.P. Poirier, Y. Ricard, J. Tarduno and R. Van der Voo for very useful comments on an earlier version of this paper. Special thanks to B. Steinberger for particularly detailed and helpful comments and help with several parts of Figure T19. IPGP Contribution NS 2094.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this entry

Cite this entry

Courtillot, V. (2007). True Polar Wander. In: Gubbins, D., Herrero-Bervera, E. (eds) Encyclopedia of Geomagnetism and Paleomagnetism. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4423-6_308

Download citation

Publish with us

Policies and ethics