Skip to main content

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Beck, J.W., Edwards, R.L., Ito, E., Taylor, F.W., Recy, J., Rougerie, F., Joannot, P., and Henin, C., 1992. Sea-surface temperature from coral skeletal Sr/Ca ratios. Science, 257, 644–647.

    Google Scholar 

  • Berger, W.H., and Keir, R., 1984. Glacial-Holocene changes in atmospheric CO2 and the deep-sea record. In Hansen, J.E., and Takahashi, T. (eds.), Climate Processes and Climate Sensitivity, Geophysical Monograph 29, 337–351. Washington, DC: American Geophysical Union.

    Google Scholar 

  • Berger, W.H., Fischer, K., Lai, C., and Wu, G., 1987. Ocean productivity and organic carbon flux. I. Overview and maps of primary production and export production. San Diego: University of California, SIO Reference 87–30.

    Google Scholar 

  • Blumer, M., Guillard, R.R.L., and Chase, T., 1971. Hydrocarbons of marine plankton. Mar. Biol., 8, 183–189.

    Google Scholar 

  • Boon, J.J., van der Meer, F.W., Schuyl, P.J.W., de Leeuw, J.W., Schenck, P.A., and Burlingame, A.L., 1978. 1. Organic geochemical analysis of core samples from site 362 Walvis Ridge, DSDP Leg 40. In Bolli, H.M., and Ryan, W.B.F. (Hrsg.) Initial Reports of the Deep Sea Drilling Project, vols. 38, 39, 40, and 41, Supplement, Walvis Ridge DSDP Leg 40. Washington, DC: U.S. Government Printing Office, pp. 627–637.

    Google Scholar 

  • Bourbonniere, R.A., and Meyers, P.A., 1996. Sedimentary geolipid records of historical changes in the watersheds and productivities of Lakes Ontario and Erie. Limnol. Oceanogr., 41, 352–359.

    Google Scholar 

  • Boyle E.A., 1988. Cadmium: Chemical tracer of deep-water paleoceanography. Paleoceanography, 3, 471–489.

    Google Scholar 

  • Boyle, E.A., 1992. Cadmium and δ13C paleochemical ocean distributions during the stage 2 glacial maximum. Ann. Rev. Earth Planet. Sci., 20, 245–287.

    Google Scholar 

  • Boyle, E.A., Sclater, F.R., and Edmond, J.M., 1976. On the marine geochemistry of cadmium. Nature, 263, 42–44.

    Google Scholar 

  • Boyle, E.A., Labeyrie, L., and J.C. Duplessy, 1995. Calcitic foraminiferal data confirmed by cadmium in aragonitic Hoeglundina: Application to the last glacial maximum in the northern Indian Ocean. Paleoceanography, 10, 881–900.

    Google Scholar 

  • Brassell, S.C., 1980. The lipids of deep sea sediments: Their origin and fate in the Japan Trench. Ph.D. Thesis, University of Bristol.

    Google Scholar 

  • Brassell, S.C., and Eglinton, G., 1984. Lipid indicators of microbial activity in marine sediments. In Hobbie, J.E., and Williams, P.J.leB. (eds.), Heterotrophic Activity in the Sea. New York: Plenum Press, pp. 481–503.

    Google Scholar 

  • Brassell, S.C., Eglinton, G., Marlowe, I.T., Pflaumann, U., and Sarnthein, M., 1986. Molecular stratigraphy: A new tool for climatic assessment. Nature, 320, 129–133.

    Google Scholar 

  • Conte, M.H., Thompson, A., Lesley, D., and Harris, R.P., 1998. Genetic and physiological influences on the alkenone/alkenoate versus growth temperature relationship in Emiliania huxleyi and Gephyrocapsa oceanica. Geochim. Cosmochim. Acta, 62, 51–68.

    Google Scholar 

  • Cranwell, P.A., Eglinton, G., and Robinson, N., 1987. Lipids of aquatic organisms as potential contributors to lacustrine sediments – II. Org. Geochem., 11, 513–527.

    Google Scholar 

  • De Leeuw, J., and Baas, M., 1986. Early-stage diagenesis of sterols. In Johns, R.B. (ed.), Biological Markers in the Sedimentary Record. Amsterdam: Elsevier, pp. 101–123.

    Google Scholar 

  • Eglinton, G., and Calvin, M., 1967. Chemical Fossils. Sci. Am., 216, 32–43.

    Google Scholar 

  • Eglinton, G., and Hamilton, R.J., 1967. Leaf epicuticular waxes. Science, 156, 1322–1335.

    Google Scholar 

  • Espitalié, J., Laporte, J.L., Madec, M., Marquis, F., Leplat, P., Paulet, J., and Boutefeu, A., 1977. Méthode rapide de caractérisation des roches mères de leur potentiel pétrolier et de leur degré d'évolution. Revue de l'Institute Français du Pétrole, 32, 23–42.

    Google Scholar 

  • Farrimond, P., Eglinton, G., and Brassell, S.C., 1986. Alkenones in Cretaceous black shales, Blake-Bahama Basin, western North Atlantic. In Leythaeuser, D., and Rullkötter, J. (eds.), Advances in Organic Geochemistry, 1985. Org. Geochem., 10, 897–903.

    Google Scholar 

  • Gagosian, R.B., and Peltzer, E.T., 1986. The importance of atmospheric input of terrestrial organic material to deep sea sediments. Org. Geochem., 10, 661–669.

    Google Scholar 

  • Herbert, T.D., Schuffert, J.D., Thomas, D., Lange, C., Weinheimer, A., Peleo-Alampay, A., and Herguera, J.C., 1998. Depth and seasonality of alkenone production along the California margin inferred from a core top transect. Paleoceanography, 13, 263–271.

    Google Scholar 

  • Higginson, M.J., 2000. Chlorin pigment stratigraphy as a new and rapid palaeoceanographic proxy in the Quaternary. Ph. D. Thesis, University of Bristol.

    Google Scholar 

  • Higginson, M.J., and Altabet, M.A., 2004. Initial test of the silicic acid leakage hypothesis using sedimentary biomarkers. Geophys. Res. Lett., 31, L18303, doi:10.1029/2004GL020511.

    Google Scholar 

  • Hoefs, M.J.L., Versteegh, G.J.M., Rijpstra, W.I.C., de Leeuw, J.W., and Sinninghe Damsté, J.S., 1998. Post-depositional oxic degradation of alkenones: Implications for the measurement of palaeo sea surface temperatures. Paleoceanography, 13, 42–49.

    Google Scholar 

  • James, A.T., and Martin, A.J.P., 1952. Gas-liquid partition chromatography: The separation and micro-estimation of volatile fatty acids from formic acid to dodecanoic acid. Biochem. J., 50, 679–690.

    Google Scholar 

  • Karl, D., and Knauer, G., 1991. Microbial production and particle flux in the upper 350 m of the Black Sea. Deep Sea Res., 38, 921–942.

    Google Scholar 

  • Keely, B.J., and Brereton, R.G., 1986. Early chlorin diagenesis in a Recent aquatic sediment. Org. Geochem., 10, 975–980.

    Google Scholar 

  • Lea, D.W., Mashiotta, T.A., and Spero, H.J., 1999. Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing. Geochim. Cosmochim. Acta, 63, 2369–2379.

    Google Scholar 

  • Lea, D.W., Pak, D.T., and Spero, H.J., 2000. Climate impact of Late Quaternary equatorial Pacific sea surface temperature variations. Science, 289, 1719–1724.

    Google Scholar 

  • Lea, D.W., Martin, P.A., Pak, D.K., and Spero, H.J., 2002. Reconstructing a 350 ky history of sea level using planktonic Mg/Ca and oxygen isotope records from a Cocos Ridge core. Quaternary Sci. Rev., 21, 283–293.

    Google Scholar 

  • Linsley, B.K., Wellington, G.M., and Schrag, D.P., 2000. Decadal sea surface temperature variability in the sub-tropical South Pacific from 1726 to 1997 AD. Science, 290, 1145–1148.

    Google Scholar 

  • Madureira, L.A.S., van Kreveld, S.A., Eglinton, G., Conte, M., Ganssen, G., van Hinte, J.E., and Ottens, J.J., 1997. Late Quaternary high-resolution biomarker and other sedimentary climate proxies in a northeast Atlantic core. Paleoceanography, 12, 255–269.

    Google Scholar 

  • Marlowe, I.T., Brassell, S.C., Eglinton, G., and Green, J.C., 1984. Long chain unsaturated ketones and esters in living algae and marine sediments. Org. Geochem., 6, 135–141.

    Google Scholar 

  • Martin, P.A., Lea, D.W., Rosenthal, Y., Shackleton, N.J., Sarnthein, M., and Papenfuss, T., 2002. Quaternary deep sea temperature histories derived from benthic foraminiferal Mg/Ca. Earth Planet. Sci. Lett., 198, 193–209.

    Google Scholar 

  • Martinez, P.H., Bertrand, P.H., Bouloubassi, I., Bareille, G., Shimmield, G., Vautravers, B., Grousset, F., Guichard, S., Ternois, Y., and Sicre, M.A., 1996. An integrated view of inorganic and organic biogeochemical indicators of palaeoproductivity changes in a coastal upwelling area. Org. Geochem., 24, 411–420.

    Google Scholar 

  • Mashiotta, T.A., Lea, D.W., and Spero, H.J., 1997. Experimental determination of cadmium uptake in the shells of the planktonic foraminifera Orbulina universa and Globigerina bulloides: Implications for surface water paleoceanography. Geochim. Cosmochim. Acta, 61, 4053–4065.

    Google Scholar 

  • Meyers, P.A., 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem. Geol., 144, 289–302.

    Google Scholar 

  • Meyers, P.A., 1997. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org. Geochem., 27, 213–250.

    Google Scholar 

  • Meyers, P.A., and Eadie, B.J., 1993. Sources, degradation, and resynthesis of the organic matter on sinking particles in Lake Michigan. Org. Geochem., 20, 47–56.

    Google Scholar 

  • Min, G.R., Edwards, R.L., Taylor, F.W., Recy, J., Gallup, C.D., and Beck, J.W., 1995. Annual cycles of U/Ca in coral skeletons and U/Ca thermometry. Geochim. Cosmochim. Acta, 59, 2025–2042.

    Google Scholar 

  • Mitsuguchi, T., Matsumoto, E., Abe, O., Uchida, T., and Isdale, P.J., 1996. Mg/Ca thermometry in coral skeletons. Science, 274, 961–963.

    Google Scholar 

  • Müller, P.J., 1977. C/N ratios in Pacific deep-sea sediments: effect of inorganic ammonium and organic nitrogen compounds sorbed by clays. Geochim. Cosmochim. Acta, 41: 765–776.

    Google Scholar 

  • Müller, P.J., and Suess, E., 1979. Productivity, sedimentation rate, and sedimentary organic matter in the oceans – I. Organic carbon preservation. Deep Sea Res. I, 26, 1347–1362.

    Google Scholar 

  • Müller, P.J., Kirst, G., Ruhland, G., Von Storch, I., and Rosell-Melé, A., 1998. Calibration of the alkenone paleotemperature index UK’ 37 based on core-tops from the eastern South Atlantic and the global ocean (60° N–60° S). Geochim. Cosmochim. Acta, 62, 1757–1772.

    Google Scholar 

  • Nürnberg, D., Bijma, J., and Hemleben, C., 1996. Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures. Geochim. Cosmochim. Acta, 60, 803–814.

    Google Scholar 

  • Ohkouchi, N., Eglinton, T.I., Keigwin, L.D., and Hayes, J.M., 2002. Spatial and temporal offsets between proxy records in a sediment drift. Science, 298, 1224–1227.

    Google Scholar 

  • Pelejero, C., Grimalt, J.O., Sarnthein, M., Wang, L., and Flores, J.A., 1999. Molecular biomarker record of sea surface temperature and climatic change in the South China Sea during the last 140,000 years. Mar. Geol., 156, 109–121.

    Google Scholar 

  • Poynter, J.G., Farrimond, P., Robinson, N., and Eglinton, G., 1989. Aeolian-derived higher plant lipids in the marine sedimentary record: Links with palaeoclimate. In Leinen, M., and Sarnthein, M. (eds.), Paleoclimatology and Paleometeorology: Modern and Past Patterns of Global Atmospheric Transport. Dordrecht: Kluwer, pp. 435–462.

    Google Scholar 

  • Prahl, F.G., and Wakeham, S.G., 1987. Calibration of unsaturation patterns in long-chain ketone compositions for paleotemperature assessment. Nature, 330, 367–369.

    Google Scholar 

  • Prahl, F.G., Muelhausen, L.A., and Zahnle, D.L., 1988. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geochim. Cosmochim. Acta, 52, 2303–2310.

    Google Scholar 

  • Prahl, F.G., de Lange, G.J., Lyle, M., and Sparrow, M.A., 1989. Post-depositional stability of long-chain alkenones under contrasting redox conditions. Nature, 341, 434–437.

    Google Scholar 

  • Quinn, T.M., and Sampson, D.E., 2002. A multiproxy approach to reconstructing sea surface conditions using coral skeleton geochemistry. Paleoceanography, 17(4), 1062, doi: 10.1029/2000PA000528.

    Google Scholar 

  • Repeta, D.J., McCaffrey, M.A., and Farrington, J.W., 1992. Organic geochemistry as a tool to study upwelling systems: Recent results from the Peru and Namibian shelves. In Summerhayes, C.P., Prell, W.L., and Emeis, K.C. (eds.), Upwelling Systems: Evolution Since the Early Miocene. Geological Society Special Publication No. 64, pp. 257–272.

    Google Scholar 

  • Rickaby, R., and Elderfield, H., 1999. Planktonic Cd/Ca: Paleonutrients or paleotemperature? Paleoceanography, 14, 293–303.

    Google Scholar 

  • Rieley, G., Collier, R.J., Jones, D.M., and Eglinton, G., 1991. The biogeochemistry of Ellesmere Lake, U.K. – I. source correlation of leaf wax inputs to the sedimentary lipid record. Org. Geochem., 17, 901–912.

    Google Scholar 

  • Rontani, J.F., Cuny, P., Grossi, V., Beker, B., 1997. Stability of long-chain alkenones in senescing cells of Emiliania huxleyi: effect of photochemical and aerobic microbial degradation on the alkenone unsaturation ratio (UK 37). Org. Geochem., 26, 503–509.

    Google Scholar 

  • Rosell-Melé, A., 1994. Long-chain alkenone and alkyl alkenoate, and total pigment abundances as climatic proxy-indicators in the northeastern Atlantic: Analytical methods, calibration and stratigraphy. Ph.D. Thesis, University of Bristol.

    Google Scholar 

  • Rosenthal, Y., Boyle, E.A., Labeyrie, L., and Oppo, D., 1995. Glacial enrichments of authigenic Cd and U in glacial sub-Antarctic sediments: A climatic control on the elements’ oceanic budget? Paleoceanography, 10, 395–413.

    Google Scholar 

  • Rosenthal, Y., Boyle, E.A., and Slowey, N., 1997. Temperature control on the incorporation of magnesium, strontium, fluorine, and cadmium into benthic foraminiferal shells from Little Bahama Bank: Prospects for thermocline paleoceanography. Geochim. Cosmochim. Acta, 61, 3633–3643.

    Google Scholar 

  • Schubert, C.J., Villanueva, J., Calvert, S.E., Cowie, G.L., von Rad, U., Schulz, H., Berner, U., and Erlenkeuser, H., 1998. Stable phytoplankton community structure in the Arabian Sea over the past 200,000 years. Nature, 394, 563–566.

    Google Scholar 

  • Schulte, S., Mangelsdorf, K., and Rullkötter, J., 2000. Organic matter preservation on the Pakistan continental margin as revealed by biomarker geochemistry. Org. Geochem., 31, 1005–1022.

    Google Scholar 

  • Sikes, E.L., and Volkman, J.K., 1993. Calibration of alkenone unsaturation ratios UK 37s for palaeotemperature estimation in cold polar waters. Geochim. Cosmochim. Acta, 57, 1883–1889.

    Google Scholar 

  • Simoneit, B.R.T., 1977. Organic matter in eolian dusts over the Atlantic Ocean. Mar. Chem., 5, 443–464.

    Google Scholar 

  • Stein, R., 1986. Surface-water paleoproductivity as inferred from sediments deposited in oxic and anoxic deepwater. In Degens, E.T., Meyers, P.A., and Brassell, S.C. (eds.), Biogeochemistry of Black Shales. Hamburg: Selbstverlag Universität Hamburg, pp. 55–70.

    Google Scholar 

  • Suess, E., 1980. Particulate organic carbon flux in the oceans: Surface productivity and oxygen utilisation. Nature, 288, 260–263.

    Google Scholar 

  • Tswett, M.S., 1905. Trudy Varshavskogo Obshchestva Estestvoispytatelei. Otdelenie Biologii, 14, 20–39.

    Google Scholar 

  • Tudhope, A.W., Chilcott, C.P., McCulloch, M.T., Cook, E.R., Chappell, J., Ellam, R.M., Lea, D.W., Lough, J.M., and Shimmield, G.B., 2001. Variability in the El Niño-Southern Oscillation through a glacial-interglacial cycle. Science, 291, 1511–1517.

    Google Scholar 

  • Volkman, J.K., 1986. A review of sterol markers for marine and terrigenous organic matter. Org. Geochem., 9, 83–99.

    Google Scholar 

  • Volkman, J.K., Eglinton, G., Corner, E.D.S., and Sargent, J.R., 1980. Novel unsaturated straight-chain C37–C39 methyl and ethyl ketones in marine sediments and a coccolithophore Emiliania huxleyi. In Douglas, A.G., and Maxwell, J.R. (eds.), Advances in Organic Geochemistry. Oxford: Pergamon Press, pp. 219–227.

    Google Scholar 

  • Weaver, P.P.E., Chapman, M.R., Eglinton, G., Zhao, M., Rutledge, D., and Read, G., 1999. Combined coccolith, foraminiferal, and biomarker reconstruction of paleoceanographic conditions over the past 120 kyr in the northern North Atlantic (59 ° N, 23 ° W). Paleoceanography, 14, 336–349.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Higginson, M.J. (2009). Geochemical Proxies (Non-Isotopic). In: Gornitz, V. (eds) Encyclopedia of Paleoclimatology and Ancient Environments. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4411-3_89

Download citation

Publish with us

Policies and ethics