Skip to main content

Carbon Isotope Variations Over Geologic Time

  • Reference work entry

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

In order to understand quantitatively the evolution of the Earth we have to deal with two types of records, direct and indirect (proxies). The isotopic composition of past seawater may be about the best proxy reflecting the evolution of our planet. This is because, due to its mixing rate of ∼1,000 years, seawater is well mixed on million-year timescales and registers a globally averaged signal. The latter, however, is true only for chemical species with seawater residence times in excess of the mixing rate of the oceans. This contribution discusses the basic structures of the isotopic seawater curves for carbon on billion to million years of geologic history, a time scale well beyond the residence time of inorganic carbon in seawater that is about 2–4 thousand years (Ka).

The recording media

Apart from inclusions of possible modified seawater in Phanerozoic salts, no samples of ancient seawater are available for direct isotope studies. We have to rely therefore on biominerals and...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   449.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  • Adkins, J.F., Boyle, E.A., Curry, W.B., and Lutringer, A., 2003. Stable isotopes in deep-sea corals and a new mechanism for “vital effects.” Geochim. Cosmochim. Acta, 67, 1129–1143.

    Google Scholar 

  • Choquette, P.W., and James, N.P., 1990. Limestones – the burial diagenetic environment. In McIlreath, I.A., and Morrow, D.W. (eds.), Diagenesis. Geoscience Canada Reprint Series. Geological Association of canada, 4, pp. 75–112.

    Google Scholar 

  • Cloud, P., 1976. Major features of crustal evolution. Geological Society of South Africa Special Publications, 79, Johannesburg, South Africa: 1–31.

    Google Scholar 

  • Frakes, L.A., Francis, J.E., and Syktus, J.I., 1992. Climate Mode of the Phanerozoic: The History of the Earth’s Climate over the Past 600 Million Years. Cambridge, UK: Cambridge University Press, 286pp.

    Google Scholar 

  • Goddéris, Y., and Veizer, J., 2000. Tectonic control of chemical and isotopic composition of ancient oceans: the impact of continental growth. Am. J. Sci., 300, 434–461.

    Google Scholar 

  • Grossman, E.L., Mii, H.-S., Zhang, C., and Yancey, T.E., 1996. Chemical variation in Pennsylvanian brachiopod shells – effects of diagenesis, taxonomy, microstructure and paleoenvironment. J. Sediment. Res., 66, 1011–1022.

    Google Scholar 

  • Hayes, J.M., Des Marais, D.J., Lambert, I.B., Strauss, H., and Summons, R.E., 1992. Proterozoic biogeochemistry. In Schopf, J.W., and Klein, C. (eds.), The Proterozoic Biosphere: A Multidisciplinary Study. New York, NY: Cambridge University Press, pp. 81–134.

    Google Scholar 

  • Hesse, R., 1990. Early diagenetic pore water/sediment interaction: modern offshore basins. In McIlreath, I.A., and Morrow, D.W. (eds.), Diagenesis. Geoscience Canada Reprint Series, Geological Association of canada, 4, pp. 277–316.

    Google Scholar 

  • Hoefs, J., 1980. Stable Isotope Geochemistry. Heidelberg: Springer Verlag, 208pp.

    Google Scholar 

  • Hoffman, P.F., Kaufman, A.J., Halverson, G.P., and Schrag, D.P., 1998. A Neoproterozoic snowball Earth. Science, 281, 1342–1346.

    Google Scholar 

  • James, N.P., and Choquette, P.W., 1990a. Limestones – the seafloor diagenetic environment. In McIlreath, I.A., and Morrow, D.W. (eds.), Diagenesis. Geoscience Canada Reprint Series, Geological Association of canada, 4, pp. 13–34.

    Google Scholar 

  • James, N.P., and Choquette, P.W., 1990b. Limestones – the meteoric diagenetic environment. In McIllreath, I.A., and Morrow, D.W. (eds.), Diagenesis. Geoscience Canada Reprint Series, Geological Association of canada, 4, pp. 35–73.

    Google Scholar 

  • Karhu, J.A., and Holland, H.D., 1996. Carbon isotopes and the rise of atmospheric oxygen. Geology, 24, 867–870.

    Google Scholar 

  • Kroopnick, P., 1980. The distribution of 13C in the Atlantic Ocean. Earth Planet. Sci. Lett., 49, 469–484.

    Google Scholar 

  • Kump, L.R., and Arthur, M.A., 1999. Interpreting carbon-isotope excursions: Carbonates and organic matter. Chem. Geol., 161, 181–198.

    Google Scholar 

  • Lasaga, A.C., and Ohmoto, H., 2002. The oxygen geochemical cycle: Dynamics and Stabilty. Geochim. Cosmochim. Acta, 66, 361–381.

    Google Scholar 

  • McArthur, J.M., 1994. Recent trends in strontium isotope stratigraphy. Terra Nova, 6, 331–358.

    Google Scholar 

  • McConnaughey, T., 1990a. 13C and 18O isotopic disequilibrium in biological carbonates: 1. Patterns. Geochimica et Cosmochimica Acta, 53, 151–162.

    Google Scholar 

  • McConnaughey, T., 1990b. 13C and 18O isotopic disequilibrium in biological carbonates: 2. In vitro simulation of kinetic isotope effects. Geochimicia et Cosmochimica Acta, 53, 163–171.

    Google Scholar 

  • Rothman, D.H., Hayes, J.M., and Summons, R., 2003. Dynamics of the Neoproterozoic carbon cycle. Proceedings of the National Academy of Sciences, 100, 8124–8129.

    Google Scholar 

  • Sackett, W.M., 1989. Stable carbon isotope studies on organic matter in the marine environment. In Fritz, P., and Fontes, J.C. (eds.), Handbook of Environmental Isotope Geochemistry. Amsterdam: Elsevier, pp. 139–169.

    Google Scholar 

  • Schidlowski, M., Hayes, J.M., and Kaplan, I.R., 1983. Isotopic inferences of ancient biochemistries: Carbon, sulfur, hydrogen, and nitrogen. In Schopf, J.W. (ed.), Earth’s Earliest Biosphere: Its Origin and Evolution. Princeton: Princeton University Press, pp. 149–187.

    Google Scholar 

  • Shaviv, N.J., and Veizer, J., 2003. Celestial driver of Phanerozoic climate? GSA Today, 13/7, 4–10.

    Google Scholar 

  • Shields, G., and Veizer, J., 2002. Precambrian marine carbonate isotope database: Version 1.1. Geochem. Geophys. Geosyst., 3/6, 12pp.

    Google Scholar 

  • Veizer, J., 1983. Trace element and isotopes in sedimentary carbonates. Rev. Mineral., 11, 265–300.

    Google Scholar 

  • Veizer, J., 1988. The earth and its life: Systems perspective. Origins of Life, 18, 13–39.

    Google Scholar 

  • Veizer, J., 1992. Depositional and diagenetic history of limestones: stable and radiogenic isotopes. In Clauer, N., and Chaudhuri, S. (eds.), Isotopic signatures in Sedimentary Records. Heidelberg: Springer, pp. 13–48.

    Google Scholar 

  • Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G. A. F., Diener, A., Ebneth, S., Goddéris, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O.G., and Strauss, H., 1999. 87Sr/86Sr, δ 13C and δ 18O evolution of Phanerozoic seawater. Chem. Geol., 161, 59–88.

    Google Scholar 

  • Veizer, J., Goddéris, Y., and François, L.M., 2000. Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon. Nature, 408, 698–701.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Veizer, J. (2009). Carbon Isotope Variations Over Geologic Time. In: Gornitz, V. (eds) Encyclopedia of Paleoclimatology and Ancient Environments. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4411-3_31

Download citation

Publish with us

Policies and ethics