Encyclopedia of Paleoclimatology and Ancient Environments

2009 Edition
| Editors: Vivien Gornitz

Borehole Climatology

  • Hugo Beltrami
  • Daniela Nitoiu
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-4411-3_27


Past ground temperatures can be estimated by analyzing perturbations to the quasi-steady state equilibrium geothermal profile in the uppermost kilometer of the Earth’s crust. In fact, it has been customary to eliminate the effects of known climatic events (mainly the last glacial termination) from the temperature profiles, in order to determine the internal heat output, an important quantity for the understanding of our planet’s dynamics. Widespread concern about global warming and temperature changes during the last century prompted many in the geothermal community to reexamine the data for evidence of more recent temperature changes. Not surprisingly, we are finding coherent and systematic temperature perturbation patterns. What had previously been considered noise is now appearing to be a rich signal of local and regional climate change.

Consider the Earth’s crust in thermal equilibrium. A temperature-depth profile starts at the surface at the mean-annual ground...
This is a preview of subscription content, log in to check access.


  1. Beltrami, H., 2001a. Surface heat flux histories from geothermal data: Inference from inversion. Geophys. Res. Lett., 28, 655–658.CrossRefGoogle Scholar
  2. Beltrami, H., 2001b. Surface heat flux histories from inversion of geothermal data: Energy balance at the Earth’s surface. J. Geophys. Res., 106, 21,979–21,994.CrossRefGoogle Scholar
  3. Beltrami, H., 2002a. Climate from borehole data: Energy fluxes and temperatures since 1500. Geophys. Res. Lett., 29(23), 2111, doi: 10.1029/2002GL015702.Google Scholar
  4. Beltrami, H., 2002b. Earth’s long-term memory. Science, 297, 206–207.CrossRefGoogle Scholar
  5. Beltrami, H., and Mareschal, J.C., 1991. Recent warming in Eastern Canada inferred from geothermal measurements. Geophys. Res. Lett., 18, 605–60.CrossRefGoogle Scholar
  6. Beltrami, H., and Mareschal, J.C., 1992. Ground temperature histories for central and eastern Canada from geothermal measurements: Little Ice Age signature. Geophys. Res. Lett., 19, 689–692.CrossRefGoogle Scholar
  7. Beltrami, H., Cheng, L., and Mareschal, J.C., 1997. Simultaneous inversion of borehole temperature data for past climate determination. Geophys. J. Int., 129, 311–318.CrossRefGoogle Scholar
  8. Beltrami, H., Wang, J.F., and Bras, R.L., 2000. Energy balance at the Earth’s surface: Heat flux history in eastern Canada. Geophys. Res. Lett., 27, 3385–3388.CrossRefGoogle Scholar
  9. Beltrami, H., Smerdon, J., Pollack, H.N., and Huang, S., 2002. Continental heat gain in the global climate system. Geophys. Res. Lett., 29, doi: 10.1029/2001GL014310.Google Scholar
  10. Beltrami, H., Gosselin C., and Mareschal, J.C., 2003. Ground surface temperatures in Canada: Spatial and temporal variability. Geophys. Res. Lett., 30(10), doi: 10.1029/2003GL017144.Google Scholar
  11. Bullard, E.C., 1939. Heat flow in South Africa. Proc. R. Soc. London A., 173, 474–502.CrossRefGoogle Scholar
  12. Carslaw, H.S., and Jaeger, J.C.,1959. Conduction of Heat in Solids, 2nd ed. New York: Oxford University Press, 510pp.Google Scholar
  13. Chisholm, T.J., and Chapman, D.S., 1992. Climate change inferred from analysis of borehole temperatures: An example from western Utah. J. Geophys. Res., 97, 14155–14176.CrossRefGoogle Scholar
  14. Grove, J.M., 1988. The Little Ice Age. London: Methuen, 498pp.Google Scholar
  15. Gonzalez-Rouco, J.F., Beltrami H., Zorita E., and Stevens M.B. (2008). Borehole climatology: A discussion based on contributions from climate modelling, Climate of the Past Discussions, 4, 81–110.Google Scholar
  16. Huang, S., Pollack, H.N., and Shen, P.Y., 2000. Temperature trends over the last five centuries reconstructed from borehole temperatures. Nature, 403, 756–758.CrossRefGoogle Scholar
  17. Jackson, D.D., 1972. Interpretation of inaccurate, insufficient, and inconsistent data. Geophys. J. R. Astron. So., 28, 97–110.Google Scholar
  18. Lachenbruch, A.H., and Marshall, B.V., 1986. Changing climate: Geothermal evidence from permafrost in the Alaskan Arctic. Science, 234, 689–696.CrossRefGoogle Scholar
  19. Lanczos, C., 1961. Linear Differential Operators. Princeton, N.J: D. Van Nostrand, 564pp.Google Scholar
  20. Levitus, S., Antonov, J., Wang, J., Delworth, T.L., Dixon, K., and Broccoli, A., 2001. Anthropogenic warming of the Earth’s climate system. Science, 292, 267–270.CrossRefGoogle Scholar
  21. Menke, W., 1989. Geophysical Data Analysis: Discrete Inverse Theory, Int. Geophys. Ser,. vol. 45, San Diego, CA: Academic Press, 289pp.Google Scholar
  22. Shen, P.Y., and Beck, A.E., 1992. Paleoclimate change and heat flow density inferred from borehole temperature data in the Superior Province of the Canadian Shield. Palaeogeogr. Palaeoclimatol. Palaeoecol. (Global and Planetary Change Section), 98, 143–165.CrossRefGoogle Scholar
  23. Wang, K., and Brass, R.L., 1999. Ground heat flux estimated from surface soil temperature. J. Hydrol. 216, 214–226.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Hugo Beltrami
  • Daniela Nitoiu

There are no affiliations available