Skip to main content

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Weathering is an important biogeochemical process that is both influenced by and influences climate over the course of Earth history. Weathering processes control the flux of solutes and many nutrients to the oceans and the marine and terrestrial biospheres, and the transfer of carbon from the ocean-atmosphere system to sedimentary rocks. Weathering rates are dependent on climate, among several factors, and vary widely across the Earth’s surface. In turn, weathering processes can alter the atmospheric concentrations of the important greenhouse gas, carbon dioxide. Weathering processes thus have the potential to act as a climate feedback, an idea that has been important in our understanding of the long-term evolution and stabilization of the Earth’s climate for over 150 years.

“Weathering” refers to the chemical alteration of rock and sedimentary deposits under sub-aerial conditions at the Earth’s surface. While some analogous processes occur in the oceanic crust during low temperature...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Arrhenius, S., 1896. On the influence of carbonic acid in the air on the temperature on the ground. Philos. Mag. J. Sci., 5, 237–276.

    Google Scholar 

  • Berner, R.A., 1991. Atmospheric CO2 levels over Phanerozoic time. Science, 249, 1382–1386.

    Article  Google Scholar 

  • Berner, R.A., Lasaga, A.C., and Garrels, R.M., 1983. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci., 283, 641–683.

    Google Scholar 

  • Bluth, G.J.S., and Kump, L.R., 1994. Lithologic and climatologic controls of river chemistry. Geochim. Cosmochim. Acta, 58, 2341–2359.

    Article  Google Scholar 

  • Burke, W.H., Denison, R.E., Hetherington, E.A., Keopnick, R.B., Nelson, H.F., and Otto, J.B., 1982. Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology, 10, 516–519.

    Article  Google Scholar 

  • Canfield, D.E., and Berner, R.A., 1989. A new model for atmopsheric oxygen over Phanerozoic time. Am. J. Sci., 289, 333–361.

    Google Scholar 

  • Cerling, E., 1992. Use of carbon isotopes in paleosols as an indicator of the P(CO2) of the paleoatmosphere. Global Biogeochem. Cycles, 6, 307–314.

    Article  Google Scholar 

  • Chadwick, O.A., and Chorover, J., 2001. The chemistry of pedogenic thresholds. Geoderma, 100, 321–353.

    Article  Google Scholar 

  • Chamberlin, T.C., 1899. An attempt to frame a working hypothesis of the cause of glacial periods on an atmospheric basis. J. Geol., 7, 545–584.

    Google Scholar 

  • Derry, L.A., and France-Lanord, C., 1996. Neogene Himalayan weathering history and river 87Sr/86Sr: Impact on the marine Sr record. Earth Planet. Sci. Lett., 142, 59–74.

    Article  Google Scholar 

  • Dessert, C., Dupre, B., Gaillardet, J., Francois, L.M., and Allegre, C.J., 2003. Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chem. Geol., 202, 257–273.

    Article  Google Scholar 

  • Drever, J.I., and Clow, D.W., 1995. Weathering rates in catchments. In White, A.F., and Brantley, S.L. (eds.), Chemical weathering rates of silicate minerals (Reviews in mineralogy, Vol. 31). Washington, D.C.: Mineralogical Society of America, pp. 463–483.

    Google Scholar 

  • Ebelmen, J.J., 1845. Sur les produits de la décomposition des espèces minérales de la famille des silicates. Annales des Mines, 7, 3–66.

    Google Scholar 

  • Edmond, J.M., 1992. Himalayan tectonics, weathering processes, and the strontium isotope record in marine limestones. Science, 258, 1594–1597.

    Article  Google Scholar 

  • Elderfield, H., and Schultz, A., 1996. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu. Rev. Earth Planet. Sci., 24, 191–224.

    Article  Google Scholar 

  • France-Lanord, C., and Derry, L.A., 1997. Organic carbon burial forcing of the carbon cycle from Himalayan erosion. Nature, 390, 65–67.

    Article  Google Scholar 

  • Galy, A., and France-Lanord, C., 1999. Weathering processes in the Ganges-Brahmaputra basin and the riverine alkalinity budget. Chem. Geol., 159, 31–60.

    Article  Google Scholar 

  • Galy, A., France-Lanord, C., and Derry, L.A., 1999. The strontium isotopic budget of Himalayan rivers in Nepal and Bangladesh. Geochim. Cosmochim. Acta, 63, 1905–1925.

    Article  Google Scholar 

  • Jacobson, A.D., and Blum, J.D., 2003. Relationship between mechanical erosion and atmospheric CO2 consumption in the New Zealand Southern Alps. Geology, 31, 865–868.

    Article  Google Scholar 

  • Jenny, H., 1941. Factors of Soil Formation. New York: McGraw-Hill, 281p.

    Google Scholar 

  • Krishnaswami, S., Trivedi, J.R., Sarin, M.M., Ramesh, R., and Sharma, K.K., 1992. Strontium isotopes and rubidium in the Ganga-Brahmaputra river system: Weathering in the Himalaya, fluxes to the Bay of Bengal and contributions to the evolution of oceanic 87Sr/86Sr. Earth Planet. Sci. Lett., 109, 243–253.

    Article  Google Scholar 

  • Lasaga, A.C., Soler, J.M., Ganor, J., Burch, T.E., and Nagy, K.N., 1994. Chemical weathering rate laws and global geochemical cycles. Geochim. Cosmochim. Acta, 58, 2361–2386.

    Article  Google Scholar 

  • Milliman, J.D., and Syvitski, P.M., 1992. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. J. Geol., 100, 525–544.

    Article  Google Scholar 

  • Mora, C.I., Driese, S.G., and Colarusso, L.A., 1996. Middle to Late Paleozoic atmospheric CO2 levels from soil carbonate and organic matter. Science, 271, 1105–1107.

    Article  Google Scholar 

  • Pagani, M., and Freeman, K.H., 1999. Late Miocene atmospheric CO2 concentrations and the expansion of C4 grasses. Science, 285, 876–879.

    Article  Google Scholar 

  • Palmer, M.R., and Edmond, J.M., 1992. Controls over the strontium isotope composition of river water. Geochim. Cosmochim. Acta, 56, 2099–2111.

    Article  Google Scholar 

  • Pearson, P.N., and Palmer, M.R., 2000. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature, 406, 695–699.

    Article  Google Scholar 

  • Petch, S.T., Berner, R.A., and Eglinton, T.I., 2000. A field study of the chemical weathering of ancient sedimentary organic matter. Org. Geochem., 31, 475–487.

    Article  Google Scholar 

  • Prell, W.L., Murray, D.W., and Clemens, S.C., 1992. Evolution and variability of the Indian Ocean summer monsoon: Evidence from the Western Arabian sea drilling program. In Duncan, R.A., Rea, D.K., Kidd, R.B., von Rad, U., and Weissel, J.K. (eds.), Synthesis of Results from Scientific Drilling in the Indian Ocean, Washington D.C.: American Geophysical Union, pp. 447–469.

    Google Scholar 

  • Quade, J., Cerling, T.E., and Bowman, J.R., 1989. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature, 342, 163–166.

    Article  Google Scholar 

  • Quade, J., Roe, L., DeCelles, P.G., and Ojha, T.P., 1997. The late Neogene 87Sr/86Sr record of lowland Himalayan rivers. Science, 276, 1828–1831.

    Article  Google Scholar 

  • Raymo, M.E., and Ruddiman, W.F., 1992. Tectonic forcing of late Cenozoic climate. Nature, 359, 117–122.

    Article  Google Scholar 

  • Richter, F.M., Rowley, D.B., and DePaolo, D.J., 1992. Sr isotope evolution of seawater: The role of tectonics. Earth Planet. Sci. Lett., 109, 11–23.

    Article  Google Scholar 

  • Rowley, D.B., 2002. Rate of plate creation and destruciton: 180 Ma to present. Geol. Soc. Am. Bull., 114, 927–933.

    Article  Google Scholar 

  • Sarin, M.M., Krishnaswami, S., Dilli, K., Omayajulu, B.l.K., and Moore, W.S., 1989. Major ion chemistry of the Ganga-Brahmaputra river system: Weathering processes and fluxes to the Bay of Bengal. Geochim. Cosmochim. Acta, 53, 997–1009.

    Article  Google Scholar 

  • Stallard, R.F., and Edmond, J.M., 1983. Geochemistry of the Amazon: 2. The influence of geology and weathering environment on the dissolved load. J. Geophys. Res., 88, 9671–9688.

    Article  Google Scholar 

  • Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G.A.F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korte, G., Pawellek, F., Podlaha, O.G. and Strauss, H., 1999. Sr-87/Sr-86, delta C-13 and delta O-18 evolution of Phanerozoic seawater. Chem. Geol., 161, 59–88.

    Article  Google Scholar 

  • Walker, J.C.G., Hays, P.B., and Kasting, J.F., 1981. A negative feed back mechanism for the long-term stabilization of Earth’s surface temperature. J. Geophys. Res., 86, 9776–9782.

    Article  Google Scholar 

  • White, A.F., and Blum, A.E., 1995. Effects of climate on chemical weathering in watersheds. Geochim.t Cosmochim. Acta, 59, 1729–1747.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Derry, L.A. (2009). Weathering and Climate. In: Gornitz, V. (eds) Encyclopedia of Paleoclimatology and Ancient Environments. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4411-3_228

Download citation

Publish with us

Policies and ethics