Skip to main content

Time–Series Analysis of Paleoclimate Data

  • Reference work entry
Encyclopedia of Paleoclimatology and Ancient Environments

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Introduction

This article is a brief synopsis of time-series analysis methods that have proven to be useful in the analysis of paleoclimate data. Space limitations precludes all but the briefest outline of the actual mathematics involved, but references are provided. The following sections define some basic functions such as spectrum and autocorrelations, outline the basic multitaper methods that are recommended to estimate them, describe periodic components and Cramér–Rao bounds for frequency estimation, and coherence estimates. Other sections below discuss jackknife confidence limits for spectra and similar functions, spectrogram methods useful with nonstationary processes, discusses wavelets, Lomb–Scargle and Blackman–Tukey estimates which should be avoided for these applications. Finally, the last section summarizes the points made.

One should not expect the analysis of paleoclimate data to be easy. If one considers the effort that has been made over the last three or four decades...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    1The data was obtained from //delphi.esc.cam.ac.uk/coredata/v677846.html and the few gaps interpolated; see Appendix A of Thomson et al. (2001).

  2. 2.

    2The actual factor is the estimate efficiency Ξ defined in Thomson (1982) §VII.

  3. 3.

    3If the time-steps and number of samples are different one can still do the analysis as long as the total time span is the same and, obviously, one can always truncate a longer series. The frequencies used must be the same, so it may be necessary to use a “slow” Fourier transform (see e.g., Gentleman, 1969).

Bibliography

  • Berger, A., 1977. Long-term variations of the earth's orbital elements. Celestial Mech., 15, 53–74.

    Google Scholar 

  • Berger, A., 1978. Long-term variations of daily insolation and quaternary climatic changes. J. Atmos. Sci., 35, 2362–2367.

    Google Scholar 

  • Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., and Bonani, G., 2001. Persistent solar influence on North Atlantic climate during the Holocene. Science, 294, 2130–2136.

    Google Scholar 

  • Daubechies, I., (1992). Ten Lectures on Wavelets. Philadelphia: SIAM.

    Google Scholar 

  • Davison, A.C., and Hinkley, D.V., 1999. Bootstrap Methods and their Application. Cambridge: Cambridge University Press.

    Google Scholar 

  • Efron, B., and Tibshirani, R.J., 1998. An Introduction to the Bootstrap. Boca Raton, FL: Chapman & Hall/CRC.

    Google Scholar 

  • Gentleman, W.M., 1969. An error analysis of Goertzel's (Watt's) method for computing Fourier coefficients. Comp. J., 12, 160–165.

    Google Scholar 

  • Johnson, J., Thomson, D.J., Wu, E.X., and Williams, S.C.R., 1996. Multiple-window spectrum estimation applied to in vivo NMR spectroscopy. J. Mag. Reson., B110, 138–149.

    Google Scholar 

  • Kedem, B., 1994. Time Series Analysis by Higher Order Crossings. New York: IEEE Press.

    Google Scholar 

  • Lahiri, S.N., 2003. Resampling Methods for Dependent Data. New York: Springer.

    Google Scholar 

  • Laskar, J., 1990. The chaotic motion of the solar system: A numerical estimate of the size of the chaotic zones. Icarus, 88, 266–291.

    Google Scholar 

  • Laskar, J., 1999. The limits of earth orbital calculations for geological time-scale use. Phil. Trans. R. Soc. Lond. A, 357, 1735–1759.

    Google Scholar 

  • Laskar, J., Joutel, F., and Boudin, F., 1993. Orbital, precessional, and insolation quantities for the earth from −20 myr to +10 myr. Astron. Astrophys., 270, 522–533.

    Google Scholar 

  • Lomb, N.R., 1976. Least-squares frequency analysis of unequally spaced data. Astrophys. J. Suppl. Ser., 39, 447–462.

    Google Scholar 

  • Mallat, S., (2001). A Wavelet Tour of Signal Processing (2nd edn.). San Diego: Academic Press.

    Google Scholar 

  • Pälike, H., and Shackleton, N.J., 2000. Constraints on astronomical parameters from the geological record for the last 25 Myr. Earth Planet. Sci. Lett., 182, 1–14.

    Google Scholar 

  • Papoulis, A., 1962. The Fourier Integral and its Applications. New York: McGraw-Hill.

    Google Scholar 

  • Percival, D.B., and Walden, A.T., 1993. Spectral Analysis for Physical Applications; Multitaper and Conventional Univariate Techniques. Cambridge: Cambridge University Press.

    Google Scholar 

  • Percival, D.B., and Walden, A.T., 2000. Wavelet Methods for Time Series Analysis. Cambridge: Cambridge University Press.

    Google Scholar 

  • Rao, A.R., Hamed, K.H., and Chen, H.-L., 2003. Nonstationarities in Hydrologic and Environmental Time Series. Dordrecht: Kluwer.

    Google Scholar 

  • Rayleigh, L., 1903. On the spectrum of an irregular disturbance. Phil. Mag., 41, 238–243. (In Scientific Papers by Lord Rayleigh, vol. V, Art. 285, New York: Dover Publications, 1964, pp. 98–102).

    Google Scholar 

  • Scargle, J.D., 1981. Studies in astronomical time series analysis. I. Modeling random processes in the time domain. Astrophys. J. Suppl. Ser., 45, 1–71.

    Google Scholar 

  • Shackleton, N.J., and Pisias, N.G., 1985. Atmospheric carbon dioxide, orbital forcing, and climate. In Sundquist E., and Broeker W. (eds.), The Carbon Cycle and Atmospheric CO 2 : Natural Variations Archean to Present. Washington: AGU, Geophysical Monograph 32, pp. 412–417.

    Google Scholar 

  • Shackleton, N.J., Berger, A., and Peltier, W.R., 1990. An alternative astronomical calibration of the lower Pleistocene timescale based on ODP site 677. Trans. R. Soc. Edinburgh Earth Sci., 81, 251–261.

    Google Scholar 

  • Shackleton, N.J., Crowhurst, S., Hagelberg, T., Pisias, N.G., and Schneider, D.A., 1995a. A new late Neogene time scale: Application to leg 138 sites. Proc. Ocean Drill. Program Sci. Results, 138, 73–101.

    Google Scholar 

  • Shackleton, N.J., Hall, M.A., and Pate, D., 1995b. Pliocene stable isotope stratigraphy of site 846. Proc. Ocean Drill. Program Sci. Results, 138, 337–355.

    Google Scholar 

  • Singleton, R.A., 1969. An algorithm for computing the mixed radix fast Fourier transform. IEEE Trans. Audio Electroacoust., 17(2), 93–103.

    Google Scholar 

  • Slepian, D., 1978. Prolate spheroidal wave functions, Fourier analysis, and uncertainty V: The discrete case. Bell Syst. Tech. J., 57, 1371–1429.

    Google Scholar 

  • Thomson, D.J., 1977. Spectrum estimation techniques for characterization and development of WT4 waveguide. Bell Syst. Tech. J., 56, Part I 1769–1815, Part II, 1983–2005.

    Google Scholar 

  • Thomson, D.J., 1982. Spectrum estimation and harmonic analysis. Proc. IEEE, 70, 1055–1096.

    Google Scholar 

  • Thomson, D.J., 1990a. Quadratic-inverse spectrum estimates: Applications to paleoclimatology. Phil. Trans. R. Soc. Lond. A, 332, 539–597.

    Google Scholar 

  • Thomson, D.J., 1990b. Time series analysis of Holocene climate data. Phil. Trans. R. Soc. Lond. A, 330, 601–616.

    Google Scholar 

  • Thomson, D.J., 1995. The seasons, global temperature, and precession. Science, 268, 59–68.

    Google Scholar 

  • Thomson, D.J. 2001. Multitaper analysis of nonstationary and nonlinear time series data. In Fitzgerald, W., Smith, R., Walden, A., and Young, P. (eds.), Nonlinear and Nonstationary Signal Processing. Cambridge: Cambridge University Press, pp. 317–394.

    Google Scholar 

  • Thomson, D.J., and Chave, A.D., 1991. Jackknifed error estimates for spectra, coherences, and transfer functions. In Haykin, S. (ed.), Advances in Spectrum Analysis and Array Processing, vol. 1, chapter 2. Englewood Cliffs, NJ: Prentice-Hall, pp. 58–113.

    Google Scholar 

  • Thomson, D.J., Lanzerotti, L.J., and Maclennan, C.G., 2001. The interplanetary magnetic field: Statistical properties and discrete modes. J. Geophys. Res., 106, 15941–15962.

    Google Scholar 

  • Thomson, D.J., 2007. Jackknifing multitaper spectrum estimates. IEEE Signal Processing Magazine, 24(7), 20–30.

    Google Scholar 

  • Thomson, D.J., Lanzerotti, L.J., Vernon, F.L., III, Lessard, M.R., and Smith, L.T.P., 2007. Solar modal structure of the engineering environment. Proceedings of the IEEE, 95, 1085–1132.

    Google Scholar 

  • Tukey, J.W., 1967. An introduction to the calculations of numerical spectrum analysis. In Harris, B. (ed.), Spectral Analysis of Time Series, New York: Wiley, pp. 25–46.

    Google Scholar 

  • Weedon, G., 2003. Time–Series Analysis and Cyclostratigraphy. Cambridge: Cambridge University Press.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Thomson, D.J. (2009). Time–Series Analysis of Paleoclimate Data. In: Gornitz, V. (eds) Encyclopedia of Paleoclimatology and Ancient Environments. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4411-3_222

Download citation

Publish with us

Policies and ethics