Skip to main content

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Overview

The 8,200 year event, alternatively called the 8.2 kyr event or more simply the 8k event, refers to the last major abrupt climate change, a Northern Hemisphere cooling event that occurred approximately 8,200 years before the present (bp). The 8.2 kyr event is the largest anomaly in the Greenland ice cores during the Holocene (see Holocene climates), a period otherwise marked by a relatively stable climate. Paleoclimate records from Europe, North America, South America, and Africa indicate an abrupt cooling event in the Northern Hemisphere. Separate geologic evidence documents the collapse of the remnants of the Hudson Bay ice dome dam and subsequent catastrophic final drainage of glacial Lakes Agassiz and Ojibway into the Hudson Bay, at approximately the same time. These lakes once occupied northern portions of the Canadian provinces of Manitoba and Ontario, respectively.

A potential atmospheric link between the disappearance of the glacial lakes and the far-field climate...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Ágústsdóttir, A.M., 1998. Abrupt climate changes and the effects of North Atlantic deepwater formation: Results from the GENESIS global climate model and comparison with data from the Younger Dryas event and the event at 8200 ybp and the present. PhD Thesis, Pennsylvania, USA, The Pennsylvania State University, University Park.

    Google Scholar 

  • Alley, R., and Ágústsdóttir, A.M., 2005. The 8k event: Cause and consequences of a major Holocene abrupt climate change. Quaternary Sci. Rev., 24, 1123–1149.

    Google Scholar 

  • Alley, R.B., Mayewski, P.A., Sowers, T., Stuiver, M., Taylor, K.C., and Clark, P.U., 1997. Holocene climatic instability: A prominent, widespread event 8200 years ago. Geology, 25, 483–486.

    Google Scholar 

  • Alley, R.B., Meese, D.A., Shuman, C.A., Gow, A.J., Taylor, K.C., Grootes, P.M., White, J.W.C., Ram, M., Waddington, E.D., Mayewski, P.A., and Zielinski, G.A., 1993. Abrupt increase in snow accumulation at the end of the Younger Dryas event. Nature, 362, 527–529.

    Google Scholar 

  • Arz, H.W., Gerhardt, S., Pätzold, J., and Röhl, U., 2001. Millennial-scale changes of surface- and deep-water flow in the western tropical Atlantic linked to Northern Hemisphere high-latitude climate during the Holocene. Geology, 29(3), 239–242.

    Google Scholar 

  • Barber, D.C., Dyke, A., Hillaire-Marcel, C., Jennings, A.E., Andrews, J.T., Kerwin, M.W., Bilodeau, G., McNeely, R., Souhon, J., Morehead, M.D., and Gagnon, J.-M., 1999. Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature, 400, 344–348.

    Google Scholar 

  • Bauer, E., Ganopolski, A., and Montoya, M., 2004. Simulation of the cold climate event 8,299 years ago by meltwater outburst from Lake Agassiz. Paleoceanography, 19, PA3014.

    Google Scholar 

  • Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M.N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., and Bonani, G., 2001. Persistent solar influence on North Atlantic climate during the Holocene. Science, 294, 2130–2136.

    Google Scholar 

  • Broecker, W.S., Peteet, D.M., and Rind, D., 1985. Does the ocean-atmosphere system have more than one stable mode of operation? Nature, 315(2), 21–26.

    Google Scholar 

  • Broecker, W.S., 1998. Paleocean circulation during the last deglaciation: A bipolar seesaw? Paleoceanography, 13(2), 119–121.

    Google Scholar 

  • Brook, E.J., Harder, S., Severinghaus, J.P., Steig, E.J., and Sucher, C.M., 2000. On the origin and timing of rapid changes in atmospheric methane during the last glacial period. Glob. Biogeochem. Cycles, 14, 559–572.

    Google Scholar 

  • Chappellaz, J., Blunier, T., Raynaud, D., Barnola, J.M., Schwander, J., and Stauffer, B., 1993. Synchronous changes in atmospheric CH4 and Greenland climate between 40 and 8 kybp. Nature, 366, 443–445.

    Google Scholar 

  • Clarke, G.K.C., Leverington, D.W., Teller, J.T., and Dyke, A.S., 2004. Paleohydraulics of the last outburst flood from glacial Lake Agassiz and the 8200 bp cold event. Quaternary Sci. Rev., 23, 389–407.

    Google Scholar 

  • Cuffey, K.M., Clow, G.D., Alley, R.B., Stuiver, M., Waddington, E.D., and Saltus, R.W., 1995. Large Arctic temperature change at the glacial-Holocene transition. Science, 270, 455–458.

    Google Scholar 

  • Dahl, S.O., and Nesje, A., 1994. Holocene glacier fluctuations at Hardangerjokulen, central-southern Norway: A high-resolution composite chronology from lacustrine and terrestrial deposits. The Holocene, 4, 269–277.

    Google Scholar 

  • Dansgaard, W., 1987. Ice core evidence of abrupt climatic changes. In Berger, W.J., and Labeyrie, L.D. (eds.), Abrupt Climatic Change: Evidence and Implications. Dordrecht, The Netherlands: Reidel, pp. 223–233.

    Google Scholar 

  • Dean, W.E., Forester, R.M., and Bradbury, J.P., 2002. Early Holocene change in atmospheric circulation in the Northern Great Plains: an upstream view of the 8.2 ka cold event. Quaternary Sci. Rev., 21, 1763–1775.

    Google Scholar 

  • De Vernal, A., Hillaire-Marcel, C., von Grafenstein, U., and Barber, D., 1997. Researchers Look for Links Among Paleoclimate Events. EOS, Transactions of the American Geophysical Union, vol. 78, pp. 247–249.

    Google Scholar 

  • Dyke, A.S., 2004. An outline of North American Deglaciation with emphasis on central and northern Canada. In Ehlers, J., and Gibbard, P.L. (eds.), Quaternary Glaciations – Extent and Chronology, Part II: North America. Amsterdam: Elsevier, pp. 371–406.

    Google Scholar 

  • Field, C.V., Schmidt, G.A., Koch, D.M., and Salyk, C., 2006. Modeling production and climate-related impacts on 10Be concentration in ice cores. J. Geophys. Res. – Atmos., 111, D15107, doi: 10.1029/20055JD006410.

    Google Scholar 

  • Gasse, F., and Van Campo, E., 1994. Abrupt postglacial climate events in West Asia and North-Africa monsoon domains. Earth Planet Sci. Lett., 126, 435–456.

    Google Scholar 

  • Haug, G.H., Hughen, K.A., Sigman, D.M., Peterson, L.C., and Röhl, U., 2001. Southward migration of the inter-tropical convergence zone through the Holocene. Science, 293, 1304–1308.

    Google Scholar 

  • Hillaire-Marcel, C., de Vernal, A., Bilodeau, G., and Wu, G., 1994. Isotope stratigraphy, sedimentation rates, deep circulation, and carbonate events in the Labrador Sea during the last ∼200 ka. Can. J. Earth Sci., 31, 63–89.

    Google Scholar 

  • Hillaire-Marcel, C., and de Vernal, A., 1995. Mais que s'est ∼ il donc passé vers 8,000 ans bp? Association Québec Etude Quaternary, Annual meeting, University of Montreal, Abstracts volume, 16.

    Google Scholar 

  • Houweling, S., Kaminski, T., Dentener, F., Lelieveld, J., and Heimann, M., 1999. Inverse modeling of methane sources and sinks using the adjoint of a global transport model. J. Geophys. Res., 104, 26137–26160.

    Google Scholar 

  • Hu, F.S., Slawinski, D., Wright, H.E. Jr., Ito, E., Johnson, R.B., Kelts, K.R., McEwan, R.F., and Boedigheimer, A., 1999. Abrupt changes in North American climate during the early Holocene times. Nature, 400, 437–440.

    Google Scholar 

  • Hughen, K.A., Overpeck, J.T., Peterson, L.C., and Trumbore, S., 1996. Rapid climate changes in the tropical Atlantic region during the last deglaciation. Nature, 380, 51–54.

    Google Scholar 

  • Josenhans, H.W., and Zevenhuizen, J., 1990. Dynamics of the Laurentide Ice Sheet in Hudson Bay, Canada. Mar. Geol., 92, 1–26.

    Google Scholar 

  • Keigwin, L.D., Sachs, J.P., Rosenthal, Y., and Boyle, E.A., 2005. The 8200 ybp event in the slope water system, western subpolar North Atlantic. Paleoceanography, 20, PA2003.

    Google Scholar 

  • Kerwin, M.W., 1996. A Regional Stratigraphic Isochron (ca. 8000 14C ybp) from Final Deglaciation of Hudson Strait. Quaternary Res., 46, 89–98.

    Google Scholar 

  • Klassen, R.W., 1983. Lake Agassiz and the late glacial history of northern Manitoba. In Teller, J.T., and Clayton, L. (eds.), Glacial Lake Agassiz. St. john's, NL: Geological Association of Canada. GAC Special Paper 26, pp. 97–115.

    Google Scholar 

  • Klitgaard-Kristensen, D., Sejrup, H.P., Haflidason, H., Johnsen, S., and Spurk, M., 1998. A regional 8200 cal ybp cooling event in northwest Europe, induced by final stages of the Laurentide ice sheet deglaciation? Journal of Quaternary Science, 13, 165–169.

    Google Scholar 

  • Klitgaard-Kristensen, D., Sejrup, H.P., and Haflidason, H., 2001. The last 18 kyr fluctuations in Norwegian Sea surface conditions and implications for the magnitude of climatic change: Evidence from the North Sea. Paleoceanography, 15(5), 455–467.

    Google Scholar 

  • Kneller, M., and Peteet, D., 1999. Late-glacial to early Holocene climate changes from a central Appalachian pollen and macrofossil record. Quaternary Res., 51, 133–147.

    Google Scholar 

  • LeGrande, A.N., Schmidt, G.A., Shindell, D.T., Field, C.V., Miller, R.L., Koch, D.M., Faluvegi, G., and Hoffmann, G., 2006. Consistent simulations of multiple proxy responses to an abrupt climate change event. Proc. Natl. Acad. Sci., 104(3), 837–842.

    Google Scholar 

  • Leuenberger, M.C., Lang, C., and Schwander, J., 1999. δ15N measurements as a calibration tool for the paleothermometer and gas-ice age differences: A case study for the 8200 bp event on GRIP ice. J Geophys. Res., 104D, 22163–22170.

    Google Scholar 

  • Leverington, D.W., Mann, J.D., and Teller, J.T., 2002. Changes in the bathymetry and volume of glacial Lake Agassiz between 9200 and 7600 14C ybp. Quaternary Res., 57, 244–252.

    Google Scholar 

  • Masson, V., Vimeux, F., Jouzel, J., Morgan, V., Delmotte, M. et al., 2000. Holocene Climate Variability in Antarctica Based on 11 Ice-Core Isotopic Records. Quaternary Res., 54, 348–358.

    Google Scholar 

  • McManus, J.F., Francois, R., Gherardi, J.M., Keigwin, L.D., and Brown-Leger, S., 2004. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature, 428, 834–837.

    Google Scholar 

  • Morrill, C., and Jacobsen, R.M., 2005. How widespread were climate anomalies 8200 years ago? Geophys. Res. Lett., 32, L19701, doi: 10.1029/2005GL023536.

    Google Scholar 

  • Muscheler, R., Beer, J., and Vonmoos, M., 2004. Causes and timing of the 8200 ybp event inferred from the comparison of the GRIP 10Be and the tree ring ▵14C record. Quaternary Sci. Rev., 23, 2101–2111.

    Google Scholar 

  • O'Brien, S.M., Mayewski, P.A., Meeker, L.D., Meese, D.A., Twickler, M.S., and Whitlow, S.I., 1995. Complexity of Holocene climate as reconstructed from a Greenland ice core. Science, 270, 1962–1964.

    Google Scholar 

  • Petit, J.R., Jouzel, J., Raynaud, D., et al., 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399, 429–436.

    Google Scholar 

  • Renssen, H., Goosse, H., Fichefet, T., and Campin, J.M., 2001. The 8.2 kybp event simulated by a global atmosphere–sea–ice–ocean model. Geophys. Res. Lett., 28, 1567–1570.

    Google Scholar 

  • Renssen, H., Goosse, H., and Fichefet, T., 2002. Modeling the effect of freshwater pulses on the early Holocene climate: The influence of high-frequency climate variability. Paleoceanography, 17, PA1020.

    Google Scholar 

  • Risebrobakken, B., Jansen, E., Andersson, C., Mjelde, E., and Hevroy, K., 2003. A high-resolution study of Holocene paleoclimatic and paleoceanographic changes in the Nordic Seas. Paleoceanography, 18, PA1017.

    Google Scholar 

  • Schmidt, G.A., and LeGrande, A.N., 2005. The Goldilocks abrupt climate change event. Quaternary Sci. Rev., 24, 1109–1110.

    Google Scholar 

  • Spinelli, G., 1996. A statistical analysis of ice-accumulation level and variability in the GISP2 ice core and a reexamination of the age of the termination of the Younger Dryas cooling episode. University Park, Pennsylvania State University, Earth System Science Center Technical Report No. 96-001, pp. 1–36.

    Google Scholar 

  • Stouffer, R.J., Yin, J., Gregory, J.M., et al., 2006. Investigating the Causes of the Response of the Thermohaline Circulation to Past and Future Climate Changes. J. Clim., 19, 1365–1387.

    Google Scholar 

  • Teller, J.T., Leverington, D.W., and Mann, J.D., 2002. Freshwater outbursts to the oceans from glacial Lake Agassiz and their role in climate change during the last deglaciation. Quaternary Sci. Rev., 21, 879–887.

    Google Scholar 

  • Thompson, L.G., Mosley-Thompson, E., Davis, M.E., Henderson, K.A., Brecher, H.H., Zagorodnov, V.S., Mashiotta, T.A., Lin, P.N., Mikhalenko, V.N., Hardy, D.R., and Beer, J., 2002. Kilimanjaro ice core records: Evidence of Holocene climate change in tropical Africa. Science, 298, 589–593.

    Google Scholar 

  • Törnqvist, T.E., Bick, S.J., Gonzalez, J.L., van der Borg, K., and de Jong, A.F.M., 2004. Tracking the sea-level signature of the 8.2 ka cooling event: New constraints from the Mississippi Delta. Geophys. Res. Lett., 31, L23309.

    Google Scholar 

  • von Grafenstein, U., Erlenkeuser, H., Müller, J., Jouzel, J., and Johnsen, S., 1998. The cold event 8200 years ago documented in oxygen isotope records of precipitation in Europe and Greenland. Clim. Dyn., 14, 73–81.

    Google Scholar 

  • Wang, X., Auler, A.S., Edwards, R.L., Cheng, H., Ito, E., Solheid, M., 2005. Inter-hemispheric Anti-phased Climate Changes During the Last Deglaciation. Eos Trans., AGU, 86(52), Fall Meeting Supplement, Abstract PP13B–1493.

    Google Scholar 

  • Yiou, F., Raisbeck, G.M., Baumgartner, S., Beer, J., Hammer, C., Johnsen, S., Jouzel, J., Kubik, P.W., Lestringuez, J., Stievenard, M., Suter, M., and Yiou, P., 1997. Beryllium-10 in the Greenland Ice Core Project ice core at Summit, Greenland. J. Geophys. Res. – Oceans, 102, 26783–26794.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

LeGrande, A.N. (2009). The 8,200-Year BP Event. In: Gornitz, V. (eds) Encyclopedia of Paleoclimatology and Ancient Environments. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4411-3_219

Download citation

Publish with us

Policies and ethics