Encyclopedia of Paleoclimatology and Ancient Environments

2009 Edition
| Editors: Vivien Gornitz

Radiocarbon Dating

  • R. Ervin Taylor
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-4411-3_200

Radiocarbon (14C) dating, now in its fifth decade of routine use, remains the most widely employed method of inferring chronometric age for organic materials from the late Pleistocene and Holocene. It provides the principal time scale for reconstruction of the history of late Quaternary environments, including the temporal scale for climate proxy records, and documents chronometric relationships for prehistoric human cultures on a world-wide basis.

Radiocarbon dating model

The natural production of 14C is a secondary effect of cosmic-ray interactions with atmospheric gas molecules, with the resultant production of neutrons (Figure R1). Most 14C is formed by the reaction of neutrons with 14N. It is then rapidly oxidized to form 14CO 2. In this form, 14C is distributed throughout the Earth’s atmosphere by stratospheric winds, becoming generally well-mixed by the time 14C-tagged CO 2 molecules reach the Earth’s surface. Most 14C is absorbed in the oceans, while 1–2% becomes part of the...
This is a preview of subscription content, log in to check access.

Bibliography

  1. Bard, E., 1998. Geochemical and geophysical implications of the radiocarbon calibration. Geochimica et Cosmochimica Acta, 62, 2025–2038.CrossRefGoogle Scholar
  2. Bard, E., Arnold, M., Hamelin, B., Tisnerat-Laborde, N., and Cabioch, G., 1998. Radiocarbon calibration by means of mass spectrometric 230Th-234U and 14C ages of on corals. Radiocarbon, 40, 1085–1092.Google Scholar
  3. Bell, W.T., 1991. Thermoluminescence dates for the Lake Mungo aboriginal fireplaces and the implication for the radiocarbon time scale. Archaeometry, 33, 43–50.CrossRefGoogle Scholar
  4. Bronk, C.R., and Hedges, R.E.M., 1987. A gas ion source for radiocarbon dating. Nucl. Instrum. Methods, B29, 45–49.Google Scholar
  5. Buck, C.E., and Christen, J.A., 1998. A novel approach to selecting samples for radiocarbon dating. J. Archaeol. Sci., 24, 303–310.CrossRefGoogle Scholar
  6. Damon, P.E., Donahue, D.J., Gord, B.H., Hatheway, A.L., Jull, A.J.T., Linick, T.W., Sercelo, P.J., Toolin, L.J., Bronk, C.R., Hall, E.T., Hedges, R.E.M., Housley, R., Law, I.A., Perry, C., Bonani, G., Trumbore, S., Wolfli, W., Ambers, J.C., Bowman, S.G.E., Leese, M.N., and Tite, M.S., 1989. Radiocarbon dating the shroud of Turin. Nature, 337, 611–615.CrossRefGoogle Scholar
  7. Edwards, R.L., Beck, J.W., Burr, G.S., Donahue, D.J., Chappell, J.M.A., Bloom, A.L., Druffel, E.R.M., and Taylor, F.W., 1993. A large drop in atmospheric 14C/12C and reduced melting in the Younger Dryas, documented with 230Th ages of corals. Science, 260, 962–968.CrossRefGoogle Scholar
  8. Erlenkeuser, H., 1979. A thermal diffusion plan for radiocarbon isotope enrichment from natural samples. In Berger, R., and Suess, H.E. (eds.), Radiocarbon Dating. Berkeley, CA: University of California Press, pp. 216–237.Google Scholar
  9. Geyh, M.A., and Schlüchter, C., 1998. Calibration of the 14C time scale beyond 22,000 bp. Radiocarbon, 40, 475–482.Google Scholar
  10. Gove, H.E., 1992. The history of AMS, its advantages over decay counting: Applications and Prospects. In Taylor, R.E., Long, A., and Kra, R.S. (eds.), Radiocarbon after Four Decades an Interdisciplinary Perspective. New York: Springer, pp. 214–229.Google Scholar
  11. Gove, H., 1996. Relic, Icon, or Hoax? Carbon Dating the Turin Shroud. Bristol: Institute of Physics.Google Scholar
  12. Gove, H., 1999. From Hiroshima to the Iceman: The Development and Applications of Accelerator Mass Spectrometry. Bristol: Institute of Physics.Google Scholar
  13. Grootes, P.M., Mook, W.G., Vogel, J.C., de Vries, A.E., Haring, A., and Kismaker, J., 1975. Enrichment of radiocarbon for dating samples up to 75,000 years. Zeitschrift füer Naturforschung, 30A, 1–14.Google Scholar
  14. Hedges, R.E.M., 1995. Radiocarbon dating by accelerator mass spectrometry. Am. J. Archaeol., 99, 105–108.Google Scholar
  15. Hogg, A.G., McCornac, F.G., Higham, T.F.G., Reimer, P.J., Baillie, M.G.I., and Palmer, J.G., 2002. High-precision radiocarbon measurements of contemporaneous tree-ring dated wood from the British Isles and New Zealand: ad 1850–950. Radiocarbon, 44, 633–640.Google Scholar
  16. Jull, A.J.T., Danahue, D.J., and Damon, P.E., 1996. Factors affecting the apparent radiocarbon age of textiles: A comment on “Effects of fires and biogractionation of carbon isotopes on results of radiocarbon dating of old textiles: The Shroud of Turin.” J. Archaeol. Sci., 23, 109–121.CrossRefGoogle Scholar
  17. Kirner, D., Taylor, R.E., and Southon, J.R., 1995. Reduction in backgrounds of microsamples for AMS 14C dating. Radiocarbon, 37, 697–704.Google Scholar
  18. Kirner, D., Burky, R., Taylor, R.E., and Southon, J.R., 1997. Radiocarbon dating organic residues at the microgram level. Nucl. Instrum. Methods Phys. Res., B123, 214–217.Google Scholar
  19. Kojo, Y., Kalin, R.M., and Long, A., 1994. High-precision ‘wiggle-matching’ in radiocarbon dating. J. Archaeol. Sci., 21, 475–479.CrossRefGoogle Scholar
  20. Linick, T.W., Damon, P.E., Donahue, D.J., and Jull, A.J.T., 1989. Accelerator mass spectrometry: The new revolution in radiocarbon dating. Quaternary Int., 1, 1–6.CrossRefGoogle Scholar
  21. Long, A., 1998. Attempt to affect the apprent 14C age of cotton by scorching in a CO2 environment. Radiocarbon, 40, 57–58.Google Scholar
  22. Long, A., Benz, B.F., Donahue, D.J., Jull, A.J.T., and Toolin, L.J., 1989. First direct AMS dates on early maize from Tehuacan, Mexico. Radiocarbon, 31, 1035–1040.Google Scholar
  23. Mazaud, A., Laj, C., Bard, E., Arnold, M., and Tric, E., 1992. A geomagnetic calibration of the radiocarbon time-scale. In Bard, E., and Broecker, W.S. (eds.), The Last Deglaciation: Absolute and Radiocarbon Chronologies. Berlin: Springer, pp. 163–169.Google Scholar
  24. Muller, R.A., 1977. Radioisotope dating with a cyclotron. Science, 196, 489–494.CrossRefGoogle Scholar
  25. Reimer, P.J., Hughen, K.A., Guilderson, T.P., McCormac, G., Baille, M.G.L., Bard, Ed. Barratt, P., Beck, J.W., Buck, C.E., Damon, P.E., Friedrich, M., Kromer, B., Ramsey, C.B., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., van der Plicht, J., 2002. Preliminary report of the first workshop of the INTCAL04 radiocarcbon calibration/comparison working group. Radiocarbon, 44, 653–661.Google Scholar
  26. Scott, E.M., Long, A., and Kra, R., (eds.) 1990. Proceedings of the International Workshop on Intercomparison of Radiocarbon Laboratories. Radiocarbon, 32(3), 253–397.Google Scholar
  27. Southon, J.R., Deino, A.L., Orsi, G., Terrasi, R., and Campajola, L., 1995. Calibration of the radiocarbon time scale at 37KA bp. Abstract of Papers, 209th American Chemical Society National Meeting, Part 2, p. 10.Google Scholar
  28. Stuiver, M., and Polach, H.A., 1977. Discussion: Reporting of 14C data. Radiocarbon, 19, 355–363.Google Scholar
  29. Stuiver, M., and Reimer, P.J., 1993. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon, 35, 215–230.Google Scholar
  30. Stuiver, M., Long, A., and Kra, R.S., (eds.) 1998a. INTCAL 98: Calibration Issue. Radiocarbon, 40, 1041–1159.Google Scholar
  31. Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, G., van der Plicht, J., and Spurk, M., 1998b. INTCAL98 Radiocarbon age calibration 24,000–0 cal bp. Radiocarbon, 40, 1041–1083.Google Scholar
  32. Suess, H.E., 1970. Bristlecone-pine calibration of radiocarbon time 5200 bc to present. In Olsson, I.U. (ed.), Radiocarbon Variations and Absolute Chronology. Stockholm: Almqvist & Wiksell, pp. 303–312.Google Scholar
  33. Taylor, R.E., 1987. Radiocarbon Dating An Archaeological Perspective. San Diego, CA: Academic Press.Google Scholar
  34. Taylor, R.E., 1991. Radioisotope dating by accelerator mass spectrometry: Archaeological and paleoanthropological perspectives. In Göksu, H.Y., Oberhofer, M., and Regulloi, D. (eds.), Scientific Dating Methods. Dordrecht (Netherlands): Kluwer, pp. 37–54.Google Scholar
  35. Taylor, R.E., 1996. Radiocarbon dating: The continuing revolution. Evol. Anthropol., 4, 169–181.CrossRefGoogle Scholar
  36. Taylor, R.E., 1997a. Radiocarbon dating. In Taylor, R.E., and Aitken, M.J. (eds.), Chronometric Dating in Archaeology. New York: Plenum, pp. 65–96.Google Scholar
  37. Taylor, R.E., 1997b. Review of H.E. Gove, Relic, Icon or Hoax? Carbon Dating the Turin Shroud. Radiocarbon 39, 115–117.Google Scholar
  38. Taylor, R.E., 2001. Radiocarbon dating. In Brothwell, D.R., and Pollard, A.M. (eds.), Handbook of Archaeological Sciences. New York: Wiley, pp. 23–34.Google Scholar
  39. Taylor, R.E., Donahue, D.J., Zabel, T.H., Damon, P.E., and Jull, A.T.J., 1984. Radiocarbon dating by particle accelerators: An archaeological Perspective. In Lambert, J.B. (ed.), Archaeological Chemistry III. Washington, DC: American Chemical Society, pp. 333–356.Google Scholar
  40. Taylor, R.E., Stuiver, M., and Reimer, P.J., 1996. Development and extension of the calibration of the radiocarbon time scale: Archaeological applications. Quaternary Sci. Rev., 15, 655–668.CrossRefGoogle Scholar
  41. Voelker, A.H.L., Sarnthein, M., Grootes, P.M., Erlenkeuser, H., Laj, C., Mazaud, A., Nadeau, M.-J., and Schleicher, M., 1998. Correlation of marine 14C ages from the Nordic seas with the GISP2 isotope record: implications for 14C calibration beyond 25 ka bp. Radiocarbon, 40, 517–534.Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • R. Ervin Taylor

There are no affiliations available