Skip to main content

Banded Iron Formations and The Early Atmosphere

  • Reference work entry
  • 1025 Accesses

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

IRON FORMATIONS, a class of chemical sediments comparable to evaporites or phosphorites, occur on all continental cratons and represent the largest repositories of iron ever precipitated from Earth’s hydrosphere (Trendall and Morris, 1983; Clout and Simonson, 2005). Iron formations reveal much about the composition of the atmosphere because of the redox sensitivity of iron in solution, and because of the dramatic change in the way iron was deposited through geologic time. The first-order observations are that Precambrian iron-rich sediments (known as iron formations) are generally cherty, thinly laminated (or banded), and widespread, whereas Phanerozoic iron-rich sediments (known as IRONSTONES) generally lack chert and are richer in aluminum (reflecting clastic contamination), not laminated, and smaller in areal extent. In order to make correct inferences about temporal changes in Earth’s atmosphere, iron formations must first be understood as chemical sediments.

Sedimentary...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   449.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  • Anbar, A.D., and Knoll, A.H., 2002. Proterozoic ocean chemistry and evolution: A bioinorganic bridge? Science, 297, 1137–1192.

    Article  Google Scholar 

  • Arnold, G.L., Anbar, A.D., Barling, J., and Lyons, T.W., 2004. Molybdenum isotope evidence for widespread anoxia in mid-Proterozoic oceans. Science, 304, 87–90.

    Article  Google Scholar 

  • Asmerom, Y., Jacobsen, S.B., Knoll, A.H., Butterfield, N.J., and Swett, K., 1991. Strontium isotopic variations of Neoproterozoic seawater; implications for crustal evolution. Geochimica et Cosmochimica Acta, 55, 2883–2894.

    Article  Google Scholar 

  • Beard, B.L., Johnson, C.M., Cox, L., Sun, H., Nealson, K.H., and Aguilar, C., 1999. Iron isotope biosignatures. Science, 285, 1889–1892.

    Article  Google Scholar 

  • Bekker, A., Kaufman, A.J., Karhu, J.A., Beukes, N.J., Swart, Q.D., Coetzee, L.L., and Eriksson, K.A., 2001. Chemostratigraphy of the Paleoproterozoic Duitschland Formation, South Africa: Implications for coupled climate change and carbon cycling. Am. J. Sci., 301, 261–285.

    Article  Google Scholar 

  • Beukes, N.J., 1983. Palaeoenvironmental setting of iron-formations in the depositional basin of the Transvaal Supergroup, South Africa. In Trendall and Morris (eds.), Iron Formations: Facts and Problems. Amsterdam: Elsevier, pp. 131–209.

    Chapter  Google Scholar 

  • Beukes, N.J., 1984. Sedimentology of the Kuruman and Griquatown Iron-formations, Transvaal Supergroup, Griqualand West, South Africa. Precambrian Res., 24, 47–84.

    Article  Google Scholar 

  • Canfield, D.E., 2005. The early history of atmospheric oxygen. Annu. Rev. Earth and Planetary Sci., 33, 1–36.

    Article  Google Scholar 

  • Cloud, P., 1973. Paleoecological significance of the banded iron-formation. Econ. Geol., 68, 1135–1143.

    Google Scholar 

  • Clout, J.M.F., and Simonson, B.M., 2005. Precambrian iron formations and iron formation-hosted iron ore deposits. In Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.P. (eds.), Economic Geology - 100th Anniversary Volume. Littleton, Colorado: Society of Economic Geologists, pp. 643–680.

    Google Scholar 

  • Coale, K.H., Johnson, K.S., Fitzwater, S.E., Gordon, R.M., and Tanner, S., et al., 1996. A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature, 383, 495–501.

    Article  Google Scholar 

  • Derry, L.A., Kaufman, A.J., and Jacobsen, S.B., 1992. Sedimentary cycling and environmental change in the Late Proterozoic: Evidence from stable and radiogenic isotopes. Geochimica et Cosmochimica Acta, 56, 1317–1329.

    Article  Google Scholar 

  • Eriksson, K.A., and Donaldson, J.A., 1986. Basinal and shelf sedimentation in relation to the Archaean-Proterozoic boundary. Precambrian Res., 33, 103–121.

    Article  Google Scholar 

  • Ewers, W.E., and Morris, R.C., 1981. Studies of the Dales Gorge Member of the Brockman Iron Formation, Western Australia. Econ. Geol., 76, 1929–1953.

    Google Scholar 

  • Fralick, P.W., and Barrett, T.J., 1995. Depositional controls on iron formation associations in Canada. In Plint, A.G. (ed.), Sedimentary Facies Analysis. International Association of Sedimentologists, Special Publication, 22, pp. 137–156.

    Google Scholar 

  • Gross, G.A., 1965. Geology of Iron Deposits of Canada, vol. I: General Geology and Evaluation of Iron Deposits. Ottawa: Geological Survey of Canada, Economic Geology Report 22.

    Google Scholar 

  • Gross, G.A., 1972. Primary features in cherty iron formations. Sediment. Geol., 2, 241–261.

    Article  Google Scholar 

  • Gross, G.A., 1983. Tectonic systems and the deposition of iron-formation. Precambrian Res., 20, 171–187.

    Article  Google Scholar 

  • Grotzinger, J.P., 1994. Trends in Precambrian carbonate sediments and their implications for understanding evolution. In Bengston, S. (ed.), Early Life on Earth. Nobel Symposium, 84. New York: Columbia University Press, pp. 245–258.

    Google Scholar 

  • Groves, D.I., Condie, K.C., Goldfarb, R.J., Hronsky, J.M.A., and Vielreicher, R.M., 2005. Secular changes in global tectonic processes and their influence on the temporal distribution of gold-bearing mineral deposits. Econ. Geol., 100, 203–224.

    Article  Google Scholar 

  • Hoffman, P.F., Kaufman, A.J., Halverson, G.P., and Schrag, D.P., 1998. A Neoproterozoic snowball Earth. Science, 281, 1342–1346.

    Article  Google Scholar 

  • Isley, A.E., 1995. Hydrothermal plumes and the delivery of iron to banded iron formation. J. Geol., 103, 169–185.

    Google Scholar 

  • Isley, A.E., and Abbott, D.H., 1999. Plume-related mafic volcanism and the deposition of banded iron formation. J. Geophys. Res., 104, 15,461–15,477.

    Article  Google Scholar 

  • James, H.L., 1954. Sedimentary facies of iron-formation. Econ. Geol., 49, 235–293.

    Google Scholar 

  • Kaufman, A.J., 1996. Geochemical and mineralogic effects of contact metamorphism on banded iron formation: an example from the Transvaal Basin, South Africa. Precambrian Res., 79, 171–194.

    Article  Google Scholar 

  • Kaufman, A.J., 1999. The genesis of siderite in Archean and Paleoproterozoic oceans. In Ninth Annual V.M. Goldschmidt Conference Abstracts with Program. Houston: Lunar and Planetary Institute, Lunar and Planetary Institute Contribution No. 971, p. 146.

    Google Scholar 

  • Kaufman, A.J., Hayes, J.M., and Klein, C., 1990. Primary and diagenetic controls of isotopic compositions of iron-formation carbonates. Econ. Geol., 54, 3461–3473.

    Google Scholar 

  • Kaufman, A.J., Knoll, A.H., and Narbonne, G.M., 1997. Isotopes, ice ages, and terminal Proterozoic earth history. Proc. Natl. Acad. Sci., 94, 6600–6605.

    Article  Google Scholar 

  • Klein, C., 1983. Diagenesis and metamorphism of banded iron-formations. In Trendall and Morris (eds.), Iron-formations: Facts and Problems. Amsterdam: Elsevier, pp. 417–469.

    Chapter  Google Scholar 

  • Klein, C., and Beukes, N.J., 1992. Proterozoic iron formations. In Condie, K.C. (ed.), Proterozoic Crustal Evolution. Amsterdam: Elsevier, pp. 383–418.

    Chapter  Google Scholar 

  • Klein, C., and Beukes, N.J., 1993. Sedimentology and geochemistry of the glaciogenic Late Proterozoic Rapitan iron-formation in Canada. Econ. Geol., 88, 542–565.

    Google Scholar 

  • Klein, C., and Ladeira, E.A., 2004. Geochemistry and mineralogy of Neoproterozoic banded iron-formations and some selected, siliceous manganese formations from the Urucum District, Mato Grosso do Sul, Brazil. Econ. Geol., 99, 1233–1244.

    Article  Google Scholar 

  • Lowe, D.R., 1992. Major events in the geological development of the Precambrian earth. In Schopf, J.W., and Klein, C. (eds.), The Proterozoic Biosphere - A Multidisciplinary Study. New York: Cambridge University Press, pp. 67–75

    Google Scholar 

  • Maliva, R.G., Knoll, A.H., and Simonson, B.M., 2005. Secular change in the Precambrian silica cycle: Insights from chert petrology. Geol. Soc. Am. Bull., 117, 835–845.

    Article  Google Scholar 

  • Ojakangas, R.W., 1983. Tidal deposits in the early Proterozoic basin of the Lake Superior region - the Palms and Pokegama Formations: Evidence for subtidal shelf deposition of Superior-type banded iron-formation. In Medaris, L.G. Jr. (ed.), Early Proterozoic Geology of the Great Lakes Region. Geological Society of America Memoir, 60, pp. 49–66.

    Google Scholar 

  • Rouxel, O.J., Bekker, A., and Edwards, K.J., 2005. Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state. Science, 307, 1088–1091.

    Article  Google Scholar 

  • Simonson, B.M., 1985. Sedimentological constraints on the origins of Precambrian iron-formations. Geol. Soc. Am. Bull., 96, 244–252.

    Article  Google Scholar 

  • Simonson, B.M., 1987. Early silica cementation and subsequent diagenesis in arenites from four early Proterozoic iron formations of North America. J. Sediment. Petrol., 57, 494–511.

    Google Scholar 

  • Simonson, B.M., 2003. Origin and evolution of large Precambrian iron formations. In Chan, M., and Archer., A. (eds.), Extreme Depositional Environments: Mega End Members in Geologic Time. Geological Society of America, Special Paper, 370, pp. 231–244.

    Google Scholar 

  • Simonson, B.M., and Hassler, S.W., 1996. Was the deposition of large Precambrian iron formations linked to major marine transgression? J. Geol., 104, 665–676.

    Google Scholar 

  • Trendall, A.F., 2002. The significance of iron-formation in the Precambrian stratigraphic record. In Altermann, W., and Corcoran, P.L. (eds.), Precambrian Sedimentary Environments: A Modern Approach to Ancient Depositional Systems. International Association of Sedimentologists, Special Publication, 33, pp. 33–66.

    Google Scholar 

  • Trendall, A.F., and Blockley, J.G., 1970. The Iron Formations of the Precambrian Hamersley Group, Western Australia. Perth: Geological Survey of Western Australia, Bulletin, 119.

    Google Scholar 

  • Trendall, A.F., and Morris, R.C. (eds.), 1983. Iron-Formation: Facts and Problems. Amsterdam: Elsevier.

    Google Scholar 

  • Veizer, J., Clayton, R.H., Hinton, R.W., von Brunn, V., Mason, T.R., Buck, S.G., and Hoefs, J., 1990. Geochemistry of Precambrian carbonates: 3 - shelf seas and non-marine environments of the Archean. Geochimica Cosmochimica Acta, 54, 2717–2729.

    Article  Google Scholar 

  • Veizer, J., Clayton, R.H., and Hinton, R.W., 1992. Geochemistry of Precambrian carbonates: IV - Early Paleoproterozoic (2.25–0.25 Ga) seawater. Geochimica Cosmochimica Acta, 56, 875–885.

    Article  Google Scholar 

  • Walter, M.R., and Hofmann, H.J., 1983. The palaeontology and palaeoecology of Precambrian iron-formations. In Trendall and Morris (eds.), Proterozoic Iron-Formations: Facts and Problems, pp. 373–400.

    Google Scholar 

  • Young, G.M., 1988. Proterozoic plate tectonics, glaciation and iron-formations. Sediment. Geol., 58, 127–144.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Simonson, B.M., Kaufman, A.J. (2009). Banded Iron Formations and The Early Atmosphere. In: Gornitz, V. (eds) Encyclopedia of Paleoclimatology and Ancient Environments. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4411-3_19

Download citation

Publish with us

Policies and ethics