Encyclopedia of Paleoclimatology and Ancient Environments

2009 Edition
| Editors: Vivien Gornitz

Banded Iron Formations and The Early Atmosphere

  • Bruce M. Simonson
  • Alan J. Kaufman
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-4411-3_19

IRON FORMATIONS, a class of chemical sediments comparable to evaporites or phosphorites, occur on all continental cratons and represent the largest repositories of iron ever precipitated from Earth’s hydrosphere (Trendall and Morris, 1983; Clout and Simonson, 2005). Iron formations reveal much about the composition of the atmosphere because of the redox sensitivity of iron in solution, and because of the dramatic change in the way iron was deposited through geologic time. The first-order observations are that Precambrian iron-rich sediments (known as iron formations) are generally cherty, thinly laminated (or banded), and widespread, whereas Phanerozoic iron-rich sediments (known as IRONSTONES) generally lack chert and are richer in aluminum (reflecting clastic contamination), not laminated, and smaller in areal extent. In order to make correct inferences about temporal changes in Earth’s atmosphere, iron formations must first be understood as chemical sediments.

Sedimentary...

This is a preview of subscription content, log in to check access

Bibliography

  1. Anbar, A.D., and Knoll, A.H., 2002. Proterozoic ocean chemistry and evolution: A bioinorganic bridge? Science, 297, 1137–1192.CrossRefGoogle Scholar
  2. Arnold, G.L., Anbar, A.D., Barling, J., and Lyons, T.W., 2004. Molybdenum isotope evidence for widespread anoxia in mid-Proterozoic oceans. Science, 304, 87–90.CrossRefGoogle Scholar
  3. Asmerom, Y., Jacobsen, S.B., Knoll, A.H., Butterfield, N.J., and Swett, K., 1991. Strontium isotopic variations of Neoproterozoic seawater; implications for crustal evolution. Geochimica et Cosmochimica Acta, 55, 2883–2894.CrossRefGoogle Scholar
  4. Beard, B.L., Johnson, C.M., Cox, L., Sun, H., Nealson, K.H., and Aguilar, C., 1999. Iron isotope biosignatures. Science, 285, 1889–1892.CrossRefGoogle Scholar
  5. Bekker, A., Kaufman, A.J., Karhu, J.A., Beukes, N.J., Swart, Q.D., Coetzee, L.L., and Eriksson, K.A., 2001. Chemostratigraphy of the Paleoproterozoic Duitschland Formation, South Africa: Implications for coupled climate change and carbon cycling. Am. J. Sci., 301, 261–285.CrossRefGoogle Scholar
  6. Beukes, N.J., 1983. Palaeoenvironmental setting of iron-formations in the depositional basin of the Transvaal Supergroup, South Africa. In Trendall and Morris (eds.), Iron Formations: Facts and Problems. Amsterdam: Elsevier, pp. 131–209.CrossRefGoogle Scholar
  7. Beukes, N.J., 1984. Sedimentology of the Kuruman and Griquatown Iron-formations, Transvaal Supergroup, Griqualand West, South Africa. Precambrian Res., 24, 47–84.CrossRefGoogle Scholar
  8. Canfield, D.E., 2005. The early history of atmospheric oxygen. Annu. Rev. Earth and Planetary Sci., 33, 1–36.CrossRefGoogle Scholar
  9. Cloud, P., 1973. Paleoecological significance of the banded iron-formation. Econ. Geol., 68, 1135–1143.Google Scholar
  10. Clout, J.M.F., and Simonson, B.M., 2005. Precambrian iron formations and iron formation-hosted iron ore deposits. In Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.P. (eds.), Economic Geology - 100th Anniversary Volume. Littleton, Colorado: Society of Economic Geologists, pp. 643–680.Google Scholar
  11. Coale, K.H., Johnson, K.S., Fitzwater, S.E., Gordon, R.M., and Tanner, S., et al., 1996. A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature, 383, 495–501.CrossRefGoogle Scholar
  12. Derry, L.A., Kaufman, A.J., and Jacobsen, S.B., 1992. Sedimentary cycling and environmental change in the Late Proterozoic: Evidence from stable and radiogenic isotopes. Geochimica et Cosmochimica Acta, 56, 1317–1329.CrossRefGoogle Scholar
  13. Eriksson, K.A., and Donaldson, J.A., 1986. Basinal and shelf sedimentation in relation to the Archaean-Proterozoic boundary. Precambrian Res., 33, 103–121.CrossRefGoogle Scholar
  14. Ewers, W.E., and Morris, R.C., 1981. Studies of the Dales Gorge Member of the Brockman Iron Formation, Western Australia. Econ. Geol., 76, 1929–1953.Google Scholar
  15. Fralick, P.W., and Barrett, T.J., 1995. Depositional controls on iron formation associations in Canada. In Plint, A.G. (ed.), Sedimentary Facies Analysis. International Association of Sedimentologists, Special Publication, 22, pp. 137–156.Google Scholar
  16. Gross, G.A., 1965. Geology of Iron Deposits of Canada, vol. I: General Geology and Evaluation of Iron Deposits. Ottawa: Geological Survey of Canada, Economic Geology Report 22.Google Scholar
  17. Gross, G.A., 1972. Primary features in cherty iron formations. Sediment. Geol., 2, 241–261.CrossRefGoogle Scholar
  18. Gross, G.A., 1983. Tectonic systems and the deposition of iron-formation. Precambrian Res., 20, 171–187.CrossRefGoogle Scholar
  19. Grotzinger, J.P., 1994. Trends in Precambrian carbonate sediments and their implications for understanding evolution. In Bengston, S. (ed.), Early Life on Earth. Nobel Symposium, 84. New York: Columbia University Press, pp. 245–258.Google Scholar
  20. Groves, D.I., Condie, K.C., Goldfarb, R.J., Hronsky, J.M.A., and Vielreicher, R.M., 2005. Secular changes in global tectonic processes and their influence on the temporal distribution of gold-bearing mineral deposits. Econ. Geol., 100, 203–224.CrossRefGoogle Scholar
  21. Hoffman, P.F., Kaufman, A.J., Halverson, G.P., and Schrag, D.P., 1998. A Neoproterozoic snowball Earth. Science, 281, 1342–1346.CrossRefGoogle Scholar
  22. Isley, A.E., 1995. Hydrothermal plumes and the delivery of iron to banded iron formation. J. Geol., 103, 169–185.Google Scholar
  23. Isley, A.E., and Abbott, D.H., 1999. Plume-related mafic volcanism and the deposition of banded iron formation. J. Geophys. Res., 104, 15,461–15,477.CrossRefGoogle Scholar
  24. James, H.L., 1954. Sedimentary facies of iron-formation. Econ. Geol., 49, 235–293.Google Scholar
  25. Kaufman, A.J., 1996. Geochemical and mineralogic effects of contact metamorphism on banded iron formation: an example from the Transvaal Basin, South Africa. Precambrian Res., 79, 171–194.CrossRefGoogle Scholar
  26. Kaufman, A.J., 1999. The genesis of siderite in Archean and Paleoproterozoic oceans. In Ninth Annual V.M. Goldschmidt Conference Abstracts with Program. Houston: Lunar and Planetary Institute, Lunar and Planetary Institute Contribution No. 971, p. 146.Google Scholar
  27. Kaufman, A.J., Hayes, J.M., and Klein, C., 1990. Primary and diagenetic controls of isotopic compositions of iron-formation carbonates. Econ. Geol., 54, 3461–3473.Google Scholar
  28. Kaufman, A.J., Knoll, A.H., and Narbonne, G.M., 1997. Isotopes, ice ages, and terminal Proterozoic earth history. Proc. Natl. Acad. Sci., 94, 6600–6605.CrossRefGoogle Scholar
  29. Klein, C., 1983. Diagenesis and metamorphism of banded iron-formations. In Trendall and Morris (eds.), Iron-formations: Facts and Problems. Amsterdam: Elsevier, pp. 417–469.CrossRefGoogle Scholar
  30. Klein, C., and Beukes, N.J., 1992. Proterozoic iron formations. In Condie, K.C. (ed.), Proterozoic Crustal Evolution. Amsterdam: Elsevier, pp. 383–418.CrossRefGoogle Scholar
  31. Klein, C., and Beukes, N.J., 1993. Sedimentology and geochemistry of the glaciogenic Late Proterozoic Rapitan iron-formation in Canada. Econ. Geol., 88, 542–565.Google Scholar
  32. Klein, C., and Ladeira, E.A., 2004. Geochemistry and mineralogy of Neoproterozoic banded iron-formations and some selected, siliceous manganese formations from the Urucum District, Mato Grosso do Sul, Brazil. Econ. Geol., 99, 1233–1244.CrossRefGoogle Scholar
  33. Lowe, D.R., 1992. Major events in the geological development of the Precambrian earth. In Schopf, J.W., and Klein, C. (eds.), The Proterozoic Biosphere - A Multidisciplinary Study. New York: Cambridge University Press, pp. 67–75Google Scholar
  34. Maliva, R.G., Knoll, A.H., and Simonson, B.M., 2005. Secular change in the Precambrian silica cycle: Insights from chert petrology. Geol. Soc. Am. Bull., 117, 835–845.CrossRefGoogle Scholar
  35. Ojakangas, R.W., 1983. Tidal deposits in the early Proterozoic basin of the Lake Superior region - the Palms and Pokegama Formations: Evidence for subtidal shelf deposition of Superior-type banded iron-formation. In Medaris, L.G. Jr. (ed.), Early Proterozoic Geology of the Great Lakes Region. Geological Society of America Memoir, 60, pp. 49–66.Google Scholar
  36. Rouxel, O.J., Bekker, A., and Edwards, K.J., 2005. Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state. Science, 307, 1088–1091.CrossRefGoogle Scholar
  37. Simonson, B.M., 1985. Sedimentological constraints on the origins of Precambrian iron-formations. Geol. Soc. Am. Bull., 96, 244–252.CrossRefGoogle Scholar
  38. Simonson, B.M., 1987. Early silica cementation and subsequent diagenesis in arenites from four early Proterozoic iron formations of North America. J. Sediment. Petrol., 57, 494–511.Google Scholar
  39. Simonson, B.M., 2003. Origin and evolution of large Precambrian iron formations. In Chan, M., and Archer., A. (eds.), Extreme Depositional Environments: Mega End Members in Geologic Time. Geological Society of America, Special Paper, 370, pp. 231–244.Google Scholar
  40. Simonson, B.M., and Hassler, S.W., 1996. Was the deposition of large Precambrian iron formations linked to major marine transgression? J. Geol., 104, 665–676.Google Scholar
  41. Trendall, A.F., 2002. The significance of iron-formation in the Precambrian stratigraphic record. In Altermann, W., and Corcoran, P.L. (eds.), Precambrian Sedimentary Environments: A Modern Approach to Ancient Depositional Systems. International Association of Sedimentologists, Special Publication, 33, pp. 33–66.Google Scholar
  42. Trendall, A.F., and Blockley, J.G., 1970. The Iron Formations of the Precambrian Hamersley Group, Western Australia. Perth: Geological Survey of Western Australia, Bulletin, 119.Google Scholar
  43. Trendall, A.F., and Morris, R.C. (eds.), 1983. Iron-Formation: Facts and Problems. Amsterdam: Elsevier.Google Scholar
  44. Veizer, J., Clayton, R.H., Hinton, R.W., von Brunn, V., Mason, T.R., Buck, S.G., and Hoefs, J., 1990. Geochemistry of Precambrian carbonates: 3 - shelf seas and non-marine environments of the Archean. Geochimica Cosmochimica Acta, 54, 2717–2729.CrossRefGoogle Scholar
  45. Veizer, J., Clayton, R.H., and Hinton, R.W., 1992. Geochemistry of Precambrian carbonates: IV - Early Paleoproterozoic (2.25–0.25 Ga) seawater. Geochimica Cosmochimica Acta, 56, 875–885.CrossRefGoogle Scholar
  46. Walter, M.R., and Hofmann, H.J., 1983. The palaeontology and palaeoecology of Precambrian iron-formations. In Trendall and Morris (eds.), Proterozoic Iron-Formations: Facts and Problems, pp. 373–400.Google Scholar
  47. Young, G.M., 1988. Proterozoic plate tectonics, glaciation and iron-formations. Sediment. Geol., 58, 127–144.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Bruce M. Simonson
  • Alan J. Kaufman

There are no affiliations available