Encyclopedia of Geoarchaeology

2017 Edition
| Editors: Allan S. Gilbert

Radiocarbon Dating

  • R. E. Taylor
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-4409-0_48

Synonyms

14C dating; Carbon-14 dating

Definition

Radiocarbon is a naturally occurring radioactive isotope of carbon used as the basis for a nuclear decay method of inferring age for terminal Pleistocene and Holocene Age organic materials.

Radiocarbon time scale provides a common chronometric time scale of worldwide applicability on a routine basis using the radiocarbon (14C) method. It is effective in age determination for the terminal Pleistocene and, except for the last few centuries, all of the Holocene.

Introduction

Carbon contains three naturally occurring isotopes, two of which are stable (12C, 13C) and one (14C or radiocarbon) which is, at the nuclear level, naturally unstable or radioactive and decays with a half-life of ~5,700 years. Radiocarbon (14C) dating is an isotopic or nuclear decay method of inferring age for organic materials, and it provides a common chronometric time scale of worldwide applicability for the late Quaternary. The technique is widely viewed as the...

This is a preview of subscription content, log in to check access.

Notes

Acknowledgments

The preparation of this article was, in part, supported by the Gabrielle O. Vierra Memorial Fund.

Bibliography

  1. Arnold, J. R., 1981. Willard F. Libby (1908–1980). In The American Philosophical Society Yearbook 1980. Philadelphia: The American Philosophical Society, pp. 608–612.Google Scholar
  2. Arnold, J. R., and Libby, W. F., 1949. Age determinations by radiocarbon content: checks with samples of known age. Science, 110(2869), 678–680.CrossRefGoogle Scholar
  3. Broecker, W. S., and Farrand, W. B., 1963. Radiocarbon age of the Two Creeks Forest Bed, Wisconsin. Geological Society of America Bulletin, 74(6), 795–802.CrossRefGoogle Scholar
  4. Bronk Ramsey, C., 2008. Radiocarbon dating: revolutions in understanding. Archaeometry, 50(2), 249–275.CrossRefGoogle Scholar
  5. Calcagnile, L., D’Onofrio, A., Fedi, M., Mandò, P. A., Quarta, G., Terrasi, F., and Tuniz, C., 2010. Accelerator mass spectrometry. In Proceedings of the 11th International Conference on Accelerators Mass Spectrometry (AMS-11), Rome, September 14–19, 2008. Nuclear Instruments and Methods Section B: Beam Interactions with Materials and Atoms, B268(7–8), 693–1359.Google Scholar
  6. Chatters, J. C., 2001. Ancient Encounters: Kennewick Man and the First Americans. New York: Simon & Schuster.Google Scholar
  7. Chen, J., Guo, Z., Liu, K., and Zhou, L., 2011. Development of accelerator mass spectrometry and its applications. Reviews of Accelerator Science and Technology, 4(1), 117–145.CrossRefGoogle Scholar
  8. Clark, G., 1970. Aspects of Prehistory. Berkeley: University of California Press.Google Scholar
  9. Clark, J. D., 1979. Radiocarbon dating and African archaeology. In Berger, R., and Suess, H. E. (eds.), Radiocarbon Dating: Proceedings of the Ninth International Conference, Los Angeles and La Jolla, 1976. Berkeley: University of California Press, pp. 7–31.Google Scholar
  10. Cook, G. T., Scott, E. M., and Harkness, D. D., 2010. Radiocarbon as a tracer in the global carbon cycle. In Froehlich, K. F. O. (ed.), Environmental Radionuclides: Tracers and Timers of Terrestrial Processes. Amsterdam: Elsevier. Radioactivity in the Environment 16, pp. 89–137.Google Scholar
  11. Damon, P. E., Donahue, D. J., Gore, B. H., Hatheway, A. L., Jull, A. J. T., Linick, T. W., Sercel, P. J., Toolin, L. J., Bronk, C. R., Hall, E. T., Hedges, R. E. M., Housley, R., Law, I. A., Perry, C., Bonani, G., Trumbore, S., Woelfli, W., Ambers, J. C., Bowman, S. G. E., Leese, M. N., and Tite, M. S., 1989. Radiocarbon dating of the Shroud of Turin. Nature, 337(6208), 611–615.CrossRefGoogle Scholar
  12. De Vries, H., 1958. Variations in concentration of radiocarbon with time and location on Earth. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen Series B, 61(2), 94–102.Google Scholar
  13. Dickinson, W. R., 2011. Geological perspectives on the Monte Verde archeological site in Chile and pre-Clovis coastal migration in the Americas. Quaternary Research, 76(2), 201–210.CrossRefGoogle Scholar
  14. Dickson, J. H., Oeggl, K., and Handley, L. L., 2003. The ice man reconsidered. Scientific American, 288(5), 70–79.CrossRefGoogle Scholar
  15. Dickson, J. H., Oeggl, K., and Handley, L. L., 2005. The iceman reconsidered. Scientific American, Special Archaeology Volume, 15(1), 4–13.Google Scholar
  16. Dillehay, T. D., 1989. Monte Verde: A Late Pleistocene Settlement in Chile. volume 1. Paleo-environment and Site Context. Washington, DC: Smithsonian Institution Press.Google Scholar
  17. Dillehay, T. D., 1997. Monte Verde: A Late Pleistocene Settlement in Chile. volume 2. The Archaeological Context and Interpretation. Washington, DC: Smithsonian Institution Press.Google Scholar
  18. Dillehay, T. D., Ramírez, C., Pino, M., Collins, M. B., Rossen, J., and Pino-Nararro, J. D., 2008. Monte Verde: seaweed, food, medicine, and the peopling of South America. Science, 320(5877), 784–786.CrossRefGoogle Scholar
  19. Freer-Waters, R. A., and Jull, A. J. T., 2010. Investigating a dated piece of the Shroud of Turin. Radiocarbon, 52(4), 1521–1527.CrossRefGoogle Scholar
  20. George, D., Southon J. R., Taylor, R. E. 2005. Resolving an anomalous radiocarbon determination on Mastodon bone from Monte Verde, Chile. American Antiquity, 70(4):764–770.Google Scholar
  21. Haynes, C. V., Jr., Doberenz, A. R., and Allen, J. A., 1966. Geological and geochemical evidence concerning the antiquity of bone tools from Tule Springs, Site 2, Clark County, Nevada. American Antiquity, 31(4), 517–521.CrossRefGoogle Scholar
  22. Johnson, F., Rainey, F., Collier, D., and Flint, R. F., 1951. Radiocarbon dating, a summary. In Johnson, F. (ed.), Radiocarbon Dating: A Report on the Program to Aid in the Development of the Method of Dating. Salt Lake City: Society for American Archaeology. Memoirs of the Society for American Archaeology 8, pp. 59–63.Google Scholar
  23. Kirner, D. L., Burky, R., Taylor, R. E., and Southon, J. R., 1997. Radiocarbon dating organic residues at the microgram level. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, B123(1–4), 214–217.CrossRefGoogle Scholar
  24. Knezovich, J., Brown T., Buchholz, B., Finkel, R., Guilderson, T., Kashgarian, M., Nimz, G., Ognibene, T., Turney, S., and Vogel, J. (eds.), 2007. Accelerator mass spectrometry. In Proceedings of the Tenth International Conference on Accelerator Mass Spectrometry, Berkeley, California, USA, 510 September 2005. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, B259(1), 1–816.Google Scholar
  25. L’Annunziata, M. F., 2007. Radioactivity: Introduction and History. Amsterdam: Elsevier.Google Scholar
  26. Leavitt, S. W., and Kahn, R. M., 1992. A new tree-ring width, δ13C and 14C investigation of the Two Creeks site. Radiocarbon, 34(3), 792–797.CrossRefGoogle Scholar
  27. Libby, W. F., 1952. Radiocarbon Dating. Chicago: University of Chicago Press.Google Scholar
  28. Libby, W. F., 1955. Radiocarbon Dating, 2nd edn. Chicago: University of Chicago Press.Google Scholar
  29. Libby, W. F., Anderson, E. C., and Arnold, J. R., 1949. Age determination by radiocarbon content: world-wide assay of natural radiocarbon. Science, 109(2827), 227–228.CrossRefGoogle Scholar
  30. Long, A., 2000. Radiocarbon: brief history of a journal. Radiocarbon, 42(1), xvii–xx.Google Scholar
  31. Pollard, A. M., 2009. Measuring the passage of time: achievements and challenges in archaeological dating. In Cunliffe, B. W., Gosden, C., and Joyce, R. A. (eds.), The Oxford Handbook of Archaeology. Oxford: Oxford University Press, pp. 145–168.Google Scholar
  32. Prinoth-Fornwagner, R., and Niklaus, T. R., 1994. The man in the ice: results from radiocarbon dating. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, B92(1–4), 282–290.CrossRefGoogle Scholar
  33. Reimer, P. J., Baillie, M. G. L., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., Buck, C. E., Burr, G. S., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., McCormac, F. G., Manning, S. W., Reimer, R. W., Richards, D. A., Southon, J. R., Talamo, S., Turney, C. S. M., van der Plicht, J., and Weyhenmeyer, C. E., 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon, 51(4), 1111–1150.CrossRefGoogle Scholar
  34. Renfrew, C., 1973. Before Civilization: The Radiocarbon Revolution and Prehistoric Europe. New York: Knopf.Google Scholar
  35. Sellards, E. H., 1952. Early Man in America. Austin: University of Texas Press.Google Scholar
  36. Stuiver, M., and Polach, H. A., 1977. Discussion: reporting of 14C data. Radiocarbon, 19(3), 355–363.CrossRefGoogle Scholar
  37. Stuiver, M., and Reimer, P. J., 1993. Extended 14C database and revised CALIB 3.0 14C age calibration program. Radiocarbon, 35(1), 215–230.CrossRefGoogle Scholar
  38. Stuiver, M., and Suess, H. E., 1966. On the relationship between radiocarbon dates and true sample ages. Radiocarbon, 8(1), 534–540.CrossRefGoogle Scholar
  39. Suess, H. E., 1955. Radiocarbon concentration in modern wood. Science, 122(3166), 415–417.CrossRefGoogle Scholar
  40. Suess, H. E., 1965. Secular variations of the cosmic-ray-produced carbon 14 in the atmosphere and their interpretations. Journal of Geophysical Research, 70(23), 5937–5952.CrossRefGoogle Scholar
  41. Taylor, R. E., 1987. Radiocarbon Dating: An Archaeological Perspective. Orlando: Academic.Google Scholar
  42. Taylor, R. E., 1996. Radiocarbon dating: the continuing revolution. Evolutionary Anthropology, 4(5), 169–181.CrossRefGoogle Scholar
  43. Taylor, R. E., 2001. Radiocarbon dating. In Brothwell, D. R., and Pollard, A. M. (eds.), Handbook of Archaeological Sciences. Chichester: Wiley, pp. 23–34.Google Scholar
  44. Taylor, R. E., and Southon, J. R., 2007. Use of natural diamonds to monitor 14C AMS instrument backgrounds. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, B259(1), 282–287.CrossRefGoogle Scholar
  45. Taylor, R. E., Haynes, C. V., Jr., Kirner, D. L., and Southon, J. R., 1999. Radiocarbon analyses of modern organics at Monte Verde, Chile: no evidence for a local reservoir effect. American Antiquity, 64(3), 455–460.CrossRefGoogle Scholar
  46. Taylor, R. E., Smith, D. G., and Southon, J. R., 2001. The Kennewick skeleton: chronological and biomolecular contexts. Radiocarbon, 43(2B), 965–976.CrossRefGoogle Scholar
  47. Taylor, R. E., Southon, J. R., and Des Lauriers, M. R., 2007. Holocene marine reservoir time series ΔR values from Cedros Island, Baja California. Radiocarbon, 49(2), 899–904.CrossRefGoogle Scholar
  48. Trumbore, S. E., 2000. Radiocarbon geochronology. In Noller, J. S., Sowers, J. M., and Lettis, W. R. (eds.), Quaternary Geochronology: Methods and Applications. Washington, DC: American Geophysical Union, pp. 41–60.CrossRefGoogle Scholar
  49. Usoskin, I. G., and Kromer, B., 2005. Reconstruction of the 14C production rate from measured relative abundance. Radiocarbon, 47(1), 31–37.CrossRefGoogle Scholar
  50. Vanzetti, A., Vidale, M., Gallinaro, M., Frayer, D. W., and Bondioli, L., 2010. The iceman as a burial. Antiquity, 84(325), 681–692.CrossRefGoogle Scholar
  51. Zink, A., Graefen, A., Oeggl, K., Dickson, J., Leitner, W., Kaufmann, G., Fleckinger, A., Gostner, P., and Egarter-Vigl, E., 2011. The iceman is not a burial: reply to Vanzetti et al. 2011. Antiquity, 85, 328.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Emeritus, Department of AnthropologyUniversity of California, RiversideRiversideUSA