Skip to main content

Scanning Electron Microscopy (SEM)

  • Reference work entry
  • First Online:
Encyclopedia of Geoarchaeology

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 480 Accesses

Definition

Scanning electron microscopy. A form of microscopy in which a focused beam of accelerated electrons is scanned across the surface of a specimen, generating a number of signals that yield information about its morphology, elemental composition, and, when outfitted with appropriate detectors, crystalline microstructure or other features.

SEM. Scanning electron microscopy or microscope. This acronym is often used interchangeably to describe the imaging/analytical technique and the instrument itself.

SEM in geoarchaeology

Introduction

SEM is a highly versatile imaging and microanalytical technique that has been used throughout the archaeological sciences for almost five decades (e.g., Pilcher, 1968; Brothwell, 1969). Most instruments are equipped for two primary functions: imaging (commonly at high magnifications) and providing compositional (i.e., elemental) information. Instruments can also be outfitted with detectors that offer additional information, such as the crystalline...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Acquafredda, P., and Muntoni, I. M., 2008. Obsidian from Pulo di Molfetta (Bari, Southern Italy): provenance from Lipari and first recognition of a Neolithic sample from Monte Arci (Sardinia). Journal of Archaeological Science, 35(4), 947–955.

    Article  Google Scholar 

  • Bello, S. M., Parfitt, S. A., De Groote, I., and Kennaway, G., 2013. Investigating experimental knapping damage on an antler hammer: a pilot-study using high-resolution imaging and analytical techniques. Journal of Archaeological Science, 40(12), 4528–4537.

    Article  Google Scholar 

  • Biró, K. T., and Pozsgai, I., 1984. Obszidián lelÅ‘hely-azonosítás elektronsugaras mikroanalízis segítségével [Obsidian characterization by electron microprobe analysis]. Iparrégészet [Industrial Archaeology], 2, 25–38 (in Hungarian).

    Google Scholar 

  • Biró, K. T., Pozsgai, I., and Vladár, A., 1986. Electron beam microanalyses of obsidian samples from geological and archaeological sites. Acta Archaeologica Academiae Scientiarum Hungaricae, 38, 257–278.

    Google Scholar 

  • Borel, A., Ollé, A., Vergès, J. M., and Sala, R., 2014. Scanning electron and optical light microscopy: two complementary approaches for the understanding and interpretation of usewear and residues on stone tools. Journal of Archaeological Science, 48, 46–59.

    Article  Google Scholar 

  • Brothwell, D. R., 1969. The study of archaeological materials by means of the scanning electron microscope: an important new field. In Brothwell, D. R., and Higgs, E. S. (eds.), Science in Archaeology: A Survey of Progress and Research, 2nd edn. London: Thames & Hudson, pp. 564–566.

    Google Scholar 

  • Brown, F. H., Nash, B. P., Fernandez, D. P., Merrick, H. V., and Thomas, R. J., 2013. Geochemical composition of source obsidians from Kenya. Journal of Archaeological Science, 40(8), 3233–3251.

    Article  Google Scholar 

  • Cartwright, C. R., 2013. Identifying the woody resources of Diepkloof Rock Shelter (South Africa) using scanning electron microscopy of the MSA wood charcoal assemblages. Journal of Archaeological Science, 40(9), 3463–3474.

    Article  Google Scholar 

  • Courty, M.-A., Carbonell, E., Vallverdú Poch, J., and Banerjee, R., 2012. Microstratigraphic and multi-analytical evidence for advanced Neanderthal pyrotechnology at Abric Romani (Capellades, Spain). Quaternary International, 247, 294–312.

    Article  Google Scholar 

  • d’Errico, F., Salomon, H., Vignaud, C., and Stringer, C., 2010. Pigments from the Middle Palaeolithic levels of Es-Skhul (Mount Carmel, Israel). Journal of Archaeological Science, 37(12), 3099–3110.

    Article  Google Scholar 

  • Dayet, L., d’Errico, F., and Garcia-Moreno, R., 2014. Searching for consistencies in Châtelperronian pigment use. Journal of Archaeological Science, 44, 180–193.

    Article  Google Scholar 

  • Douka, K., Jacobs, Z., Lane, C., Grün, R., Farr, L., Hunt, C., Inglis, R. H., Reynolds, T., Albert, P., Aubert, M., Cullen, V. L., Hill, E., Kinsley, L., Roberts, R. G., Tomlinson, E. L., Wulf, S., and Barker, G., 2014. The chronostratigraphy of the Haua Fteah cave (Cyrenaica, northeast Libya). Journal of Human Evolution, 66, 39–63.

    Article  Google Scholar 

  • Echlin, P., 2009. Handbook of Sample Preparation for Scanning Electron Microscopy and X-Ray Microanalysis. New York: Springer.

    Book  Google Scholar 

  • Eren, M. I., Roos, C. I., Story, B. A., von Cramon-Taubadel, N., and Lycett, S. J., 2014. The role of raw material differences in stone tool shape variation: an experimental assessment. Journal of Archaeological Science, 49, 472–487.

    Article  Google Scholar 

  • Frahm, E., 2010. The Bronze-Age Obsidian Industry at Tell Mozan (Ancient Urkesh), Syria. PhD dissertation, Department of Anthropology, University of Minnesota. Online via the University of Minnesota’s Digital Conservancy, http://purl.umn.edu/99753.

  • Frahm, E., 2012a. Distinguishing Nemrut DaÄŸ and Bingöl A obsidians: geochemical and landscape differences and the archaeological implications. Journal of Archaeological Science, 39(5), 1436–1444.

    Article  Google Scholar 

  • Frahm, E., 2012b. Non-destructive sourcing of Bronze age near Eastern obsidian artefacts: redeveloping and reassessing electron microprobe analysis for obsidian sourcing. Archaeometry, 54(4), 623–642.

    Article  Google Scholar 

  • Frahm, E., and Feinberg, J. M., 2013a. Empires and resources: Central Anatolian obsidian at Urkesh (Tell Mozan, Syria) during the Akkadian period. Journal of Archaeological Science, 40(2), 1122–1135.

    Article  Google Scholar 

  • Frahm, E., and Feinberg, J. M., 2013b. Environment and collapse: Eastern Anatolian obsidians at Urkesh (Tell Mozan, Syria) and the third-millennium Mesopotamian urban crisis. Journal of Archaeological Science, 40(4), 1866–1878.

    Article  Google Scholar 

  • Goldberg, P., and Sherwood, S. C., 2006. Deciphering human prehistory through the geoarcheological study of cave sediments. Evolutionary Anthropology, 15(1), 20–36.

    Article  Google Scholar 

  • Goldberg, P., Dibble, H., Berna, F., Sandgathe, D., McPherron, S. J. P., and Turq, A., 2012. New evidence on Neandertal use of fire: examples from Roc de Marsal and Pech de l’Azé IV. Quaternary International, 247, 325–340.

    Article  Google Scholar 

  • Goldstein, J. I., Newberry, D. E., Echlin, P., Joy, D. C., Fiori, C., and Lifshin, E., 1981. Scanning Electron Microscopy and X-ray Microanalysis: A Text for Biologists, Materials Scientists, and Geologists. New York: Plenum Press.

    Book  Google Scholar 

  • Goldstein, J. I., Newbury, D. E., Joy, D. C., Lyman, C. E., Echlin, P., Lifshin, E., Sawyer, L., and Michael, J. R., 2003. Scanning Electron Microscopy and X-ray Microanalysis, 3rd edn. New York: Springer.

    Book  Google Scholar 

  • Gómez-Orellana, L., Ramil-Rego, P., Badal, E., Carrión Marco, Y., and Muñoz Sobrino, C., 2014. Mid-holocene vegetation dynamics in the Tejo River estuary based on palaeobotanical records from Ponta da Passadeira (Barreiro–Setúbal, Portugal). Boreas, 43(4), 792–806.

    Article  Google Scholar 

  • Hill, A. D., Lehman, A. H., and Parr, M. L., 2007. Using scanning electron microscopy with energy dispersive X-ray spectroscopy to analyze archaeological materials. Introducing scientific concepts and scientific literacy to students from all disciplines. Journal of Chemical Education, 84(5), 810–813.

    Article  Google Scholar 

  • Iriarte, E., Foyo, A., Sánchez, M. A., Tomillo, C., and Setién, J., 2009. The origin and geochemical characterization of red ochres from the Tito Bustillo and Monte Castillo Caves (Northern Spain). Archaeometry, 51(2), 231–251.

    Article  Google Scholar 

  • Karkanas, P., 2002. Micromorphological studies of Greek prehistoric sites: new insights in the interpretation of the archaeological record. Geoarchaeology, 17(3), 237–259.

    Article  Google Scholar 

  • Keller, J., and Seifried, C., 1990. The present status of obsidian source identification in Anatolia and the Near East. In Albore Livadie, C., and Widemann, F. (eds.), Volcanology and Archaeology: Proceedings of the European Workshops of Ravello, November 19–27, 1987 and March 30–31, 1989. Strasbourg: Council of Europe. PACT: Journal of the European Study Group on Physical, Chemical, Biological and Mathematical Techniques Applied to Archaeology 25, pp. 57–87.

    Google Scholar 

  • Lane, C. S., Blockley, S. P. E., Bronk Ramsey, C., and Lotter, A. F., 2011. Tephrochronology and absolute centennial scale synchronisation of European and Greenland records for the last glacial to interglacial transition: a case study of Soppensee and NGRIP. Quaternary International, 246(1–2), 145–156.

    Article  Google Scholar 

  • Lane, C. S., Cullen, V. L., White, D., Bramham-Law, C. W. F., and Smith, V. C., 2014. Cryptotephra as a dating and correlation tool in archaeology. Journal of Archaeological Science, 42, 42–50.

    Article  Google Scholar 

  • Lee, G.-A., Davis, A. M., Smith, D. G., and McAndrews, J. H., 2004. Identifying fossil wild rice (Zizania) pollen from Cootes Paradise, Ontario: a new approach using scanning electron microscopy. Journal of Archaeological Science, 31(4), 411–421.

    Article  Google Scholar 

  • Long, J. V. P., 1995. Microanalysis from 1950 to the 1990s. In Potts, P. J., Bowles, J. F. W., Reed, S. J. B., and Cave, M. R. (eds.), Microprobe Techniques in the Earth Sciences. London: Chapman & Hall. Mineralogical Society Series 6, pp. 1–48.

    Chapter  Google Scholar 

  • Lowe, J., Barton, N., Blockley, S., Bronk Ramsey, C., Cullen, V. L., Davies, W., Gamble, C., Grant, K., Hardiman, M., Housley, R., Lane, C. S., Lee, S., Lewis, M., MacLeod, A., Menzies, M., Müller, W., Pollard, M., Price, C., Roberts, A. P., Rohling, E. J., Satow, C., Smith, V. C., Stringer, C. B., Tomlinson, E. L., White, D., Albert, P., Arienzo, I., Barker, G., Borić, D., Carandente, A., Civetta, L., Ferrier, C., Guadelli, J.-L., Karkanas, P., Koumouzelis, M., Müller, U. C., Orsi, G., Pross, J., Rosi, M., Shalamanov-Korobar, L., Sirakov, N., and Tzedakis, P. C., 2012. Volcanic ash layers illuminate the resilience of Neanderthals and early modern humans to natural hazards. Proceedings of the National Academy of Sciences, 109(34), 13532–13537.

    Article  Google Scholar 

  • Lugliè, C., Le Bourdonnec, F.-X., Poupeau, G., Congia, C., Moretto, P., Calligaro, T., Sanna, I., and Dubernet, S., 2008. Obsidians in the Rio Saboccu (Sardinia, Italy) campsite: provenance, reduction and relations with the wider Early Neolithic Tyrrhenian area. Comptes Rendus-Palevol, 7(4), 249–258.

    Article  Google Scholar 

  • Madella, M., Jones, M. K., Goldberg, P., Goren, Y., and Hovers, E., 2002. The exploitation of plant resources by Neanderthals in Amud Cave (Israel): the evidence from phytolith studies. Journal of Archaeological Science, 29(7), 703–719.

    Article  Google Scholar 

  • Mallol, C., Mentzer, S. M., and Wrinn, P. J., 2009. A micromorphological and mineralogical study of site formation processes at the Late Pleistocene site of Obi-Rakhmat, Uzbekistan. Geoarchaeology, 24(5), 548–575.

    Article  Google Scholar 

  • McLaren, S., 2004. Characteristics, evolution and distribution of Quaternary channel calcretes, southern Jordan. Earth Surface Processes and Landforms, 29(12), 1487–1507.

    Article  Google Scholar 

  • Merrick, H. V., and Brown, F. H., 1984. Rapid chemical characterization of obsidian artifacts by electron microprobe analysis. Archaeometry, 26(2), 230–236.

    Article  Google Scholar 

  • Merrick, H. V., Brown, F. H., and Nash, B. P., 1994. Use and movement of obsidian in the Early and Middle Stone Ages of Kenya and northern Tanzania. In Childs, S. T. (ed.), Society, Culture, and Technology in Africa. Philadelphia: MASCA, University of Pennsylvania Museum of Archaeology and Anthropology. MASCA Research Papers in Science and Archaeology, Supplement to Vol. 11, pp. 29–44.

    Google Scholar 

  • Messager, E., Lordkipanidze, D., Ferring, C. R., and Deniaux, B., 2008. Fossil fruit identification by SEM investigations, a tool for palaeoenvironmental reconstruction of Dmanisi site, Georgia. Journal of Archaeological Science, 35(10), 2715–2725.

    Article  Google Scholar 

  • Monnier, G. F., Ladwig, J. L., and Porter, S. T., 2012. Swept under the rug: the problem of unacknowledged ambiguity in lithic residue identification. Journal of Archaeological Science, 39(10), 3284–3300.

    Article  Google Scholar 

  • Monnier, G. F., Hauck, T. C., Feinberg, J. M., Luo, B., Le Tensorer, J.-M., and Al Sakhel, H., 2013. A multi-analytical methodology of lithic residue analysis applied to Paleolithic tools from Hummal, Syria. Journal of Archaeological Science, 40(10), 3722–3739.

    Article  Google Scholar 

  • Mulazzani, S., Le Bourdonnec, F.-X., Belhouchet, L., Poupeau, G., Zoughlami, J., Dubernet, S., Tufano, E., Lefrais, Y., and Khedhaier, R., 2010. Obsidian from the Epipalaeolithic and Neolithic eastern Maghreb. A view from the Hergla context (Tunisia). Journal of Archaeological Science, 37(10), 2529–2537.

    Article  Google Scholar 

  • Nash, B. P., Merrick, H. V., and Brown, F. H., 2011. Obsidian types from Holocene sites around Lake Turkana, and other localities in northern Kenya. Journal of Archaeological Science, 38(6), 1371–1376.

    Article  Google Scholar 

  • Nicolaysen, K. P., and Ritterbush, L. W., 2005. Critical thinking in geology and archaeology: interpreting scanning electron microscope images of a lithic tool. Journal of Geoscience Education, 53(2), 166–172.

    Article  Google Scholar 

  • Olsen, S. L., 1988. Applications of scanning electron microscopy in archaeology. Advances in Electronics and Electron Physics, 71, 357–380.

    Article  Google Scholar 

  • Olsen, S. L. (ed.), 1988a. Scanning Electron Microscopy in Archaeology. British Archaeological Reports, International Series 452. Oxford: British Archaeological Reports.

    Google Scholar 

  • Orange, M., Carter, T., and Le Bourdonnec, F.-X., 2013. Sourcing obsidian from Tell Aswad and Qdeir 1 (Syria) by SEM-EDS and EDXRF: methodological implications. Comptes Rendus Palevol, 12(3), 173–180.

    Article  Google Scholar 

  • Peruzzo, L., Fenzi, F., and Vigato, P. A., 2011. Electron backscatter diffraction (EBSD): a new technique for the identification of pigments and raw materials in historic glasses and ceramics. Archaeometry, 53(1), 178–193.

    Article  Google Scholar 

  • Pilcher, J. R., 1968. Some applications of scanning electron microscopy to the study of modern and fossil pollen. Ulster Journal of Archaeology, 31, 87–91. 3rd series.

    Google Scholar 

  • Pirrie, D., Rollinson, G. K., Andersen, J. C., Wootton, D., and Moorhead, S., 2014. Soil forensics as a tool to test reported artefact find sites. Journal of Archaeological Science, 41, 461–473.

    Article  Google Scholar 

  • Ponomarev, L. I., 1993. The Quantum Dice. Boca Raton: CRC Press.

    Google Scholar 

  • Ponting, M., 2004. The scanning electron microscope and the archaeologist. Physics Education, 39(2), 166–170.

    Article  Google Scholar 

  • Poupeau, G., Le Bourdonnec, F.-X., Carter, T., Delerue, S., Shackley, M. S., Barrat, J.-A., Dubernet, S., Moretto, P., Calligaro, T., Milić, M., and Kobayashi, K., 2010. The use of SEM-EDS, PIXE and EDXRF for obsidian provenance studies in the Near East: a case study from Neolithic Çatalhöyük (central Anatolia). Journal of Archaeological Science, 37(11), 2705–2720.

    Article  Google Scholar 

  • Reed, S. J. B., 2005. Electron Microprobe Analysis and Scanning Electron Microscopy in Geology, 2nd edn. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Reepmeyer, C., Spriggs, M., Anggraeni, Lape, P., Neri, L., Ronquillo, W. P., Simanjuntak, T., Summerhayes, G., Tanudirjo, D., and Tiauzon, A., 2011. Obsidian sources and distribution systems in Island Southeast Asia: new results and implications from geochemical research using LA-ICPMS. Journal of Archaeological Science, 38(11), 2995–3005.

    Article  Google Scholar 

  • Salomon, H., Vignaud, C., Coquinot, Y., Beck, L., Stringer, C., Strivay, D., and d’Errico, F., 2012. Selection and heating of colouring materials in the Mousterian level of es-Skhul (c. 100 000 years BP, Mount Carmel, Israel). Archaeometry, 54(4), 698–722.

    Article  Google Scholar 

  • Sanna, I., Le Bourdonnec, F.-X., Poupeau, G., and Lugliè, C., 2010. Ossidiane non sarde in Sardegna. Analisi di un rinvenimento subacqueo nel Porto di Cagliari. In Lugliè, C. (ed.), L’ossidiana del monte Arci nel Mediterraneo: Nuovi apporti sulla diffusione, sui sistemi di produzione e sulla loro cronologia: Atti del 5. Convegno Internazionale (Pau, Italia, 27–29 giugno 2008). Ales: Nur, pp. 99–119.

    Google Scholar 

  • Schiegl, S., Goldberg, P., Pfretzschner, H.-U., and Conard, N. J., 2003. Paleolithic burnt bone horizons from the Swabian Jura: distinguishing between in situ fireplaces and dumping areas. Geoarchaeology, 18(5), 541–565.

    Article  Google Scholar 

  • Sulpizio, R., Zanchetta, G., D’Orazio, M., Vogel, H., and Wagner, B., 2010. Tephrostratigraphy and tephrochronology of lakes Ohrid and Prespa, Balkans. Biogeosciences, 7(10), 3273–3288.

    Article  Google Scholar 

  • Summerhayes, G. R., Kennedy, J., Matisoo-Smith, E., Mandui, H., Ambrose, W., Allen, C., Reepmeyer, C., Torrence, R., and Wadra, F., 2014. Lepong: a new obsidian source in the Admiralty Islands, Papua New Guinea. Geoarchaeology, 29(3), 238–248.

    Article  Google Scholar 

  • Tripati, S., Mudholkar, A., Vora, K. H., Rao, B. R., Gaur, A. S., and Sundaresh, 2010. Geochemical and mineralogical analysis of stone anchors from west coast of India: provenance study using thin sections, XRF, and SEM-EDS. Journal of Archaeological Science, 37(8), 1999–2009.

    Article  Google Scholar 

  • Tryon, C. A., Logan, M. A. V., Mouralis, D., Kuhn, S., Slimak, L., and Balkan-Atlı, N., 2009. Building a tephrostratigraphic framework for the Paleolithic of Central Anatolia, Turkey. Journal of Archaeological Science, 36(3), 637–652.

    Article  Google Scholar 

  • Tykot, R. H., 1997. Characterization of the Monte Arci (Sardinia) obsidian sources. Journal of Archaeological Science, 24(5), 467–479.

    Article  Google Scholar 

  • Van Hoesen, J., and Arriaza, B., 2011. Characterizing the micromorphology of sediments associated with Chinchorro mummification in Arica, Chile using SEM and EDS. Archaeometry, 53(5), 986–995.

    Article  Google Scholar 

  • Weiner, S., 2010. Microarchaeology: Beyond the Visible Archaeological Record. Cambridge: Cambridge University Press.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellery Frahm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Frahm, E. (2017). Scanning Electron Microscopy (SEM). In: Gilbert, A.S. (eds) Encyclopedia of Geoarchaeology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4409-0_25

Download citation

Publish with us

Policies and ethics