Encyclopedia of Geoarchaeology

2017 Edition
| Editors: Allan S. Gilbert

Scanning Electron Microscopy (SEM)

Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-4409-0_25

Definition

Scanning electron microscopy. A form of microscopy in which a focused beam of accelerated electrons is scanned across the surface of a specimen, generating a number of signals that yield information about its morphology, elemental composition, and, when outfitted with appropriate detectors, crystalline microstructure or other features.

SEM. Scanning electron microscopy or microscope. This acronym is often used interchangeably to describe the imaging/analytical technique and the instrument itself.

SEM in geoarchaeology

Introduction

SEM is a highly versatile imaging and microanalytical technique that has been used throughout the archaeological sciences for almost five decades (e.g., Pilcher, 1968; Brothwell, 1969). Most instruments are equipped for two primary functions: imaging (commonly at high magnifications) and providing compositional (i.e., elemental) information. Instruments can also be outfitted with detectors that offer additional information, such as the crystalline...
This is a preview of subscription content, log in to check access

Bibliography

  1. Acquafredda, P., and Muntoni, I. M., 2008. Obsidian from Pulo di Molfetta (Bari, Southern Italy): provenance from Lipari and first recognition of a Neolithic sample from Monte Arci (Sardinia). Journal of Archaeological Science, 35(4), 947–955.CrossRefGoogle Scholar
  2. Bello, S. M., Parfitt, S. A., De Groote, I., and Kennaway, G., 2013. Investigating experimental knapping damage on an antler hammer: a pilot-study using high-resolution imaging and analytical techniques. Journal of Archaeological Science, 40(12), 4528–4537.CrossRefGoogle Scholar
  3. Biró, K. T., and Pozsgai, I., 1984. Obszidián lelőhely-azonosítás elektronsugaras mikroanalízis segítségével [Obsidian characterization by electron microprobe analysis]. Iparrégészet [Industrial Archaeology], 2, 25–38 (in Hungarian).Google Scholar
  4. Biró, K. T., Pozsgai, I., and Vladár, A., 1986. Electron beam microanalyses of obsidian samples from geological and archaeological sites. Acta Archaeologica Academiae Scientiarum Hungaricae, 38, 257–278.Google Scholar
  5. Borel, A., Ollé, A., Vergès, J. M., and Sala, R., 2014. Scanning electron and optical light microscopy: two complementary approaches for the understanding and interpretation of usewear and residues on stone tools. Journal of Archaeological Science, 48, 46–59.CrossRefGoogle Scholar
  6. Brothwell, D. R., 1969. The study of archaeological materials by means of the scanning electron microscope: an important new field. In Brothwell, D. R., and Higgs, E. S. (eds.), Science in Archaeology: A Survey of Progress and Research, 2nd edn. London: Thames & Hudson, pp. 564–566.Google Scholar
  7. Brown, F. H., Nash, B. P., Fernandez, D. P., Merrick, H. V., and Thomas, R. J., 2013. Geochemical composition of source obsidians from Kenya. Journal of Archaeological Science, 40(8), 3233–3251.CrossRefGoogle Scholar
  8. Cartwright, C. R., 2013. Identifying the woody resources of Diepkloof Rock Shelter (South Africa) using scanning electron microscopy of the MSA wood charcoal assemblages. Journal of Archaeological Science, 40(9), 3463–3474.CrossRefGoogle Scholar
  9. Courty, M.-A., Carbonell, E., Vallverdú Poch, J., and Banerjee, R., 2012. Microstratigraphic and multi-analytical evidence for advanced Neanderthal pyrotechnology at Abric Romani (Capellades, Spain). Quaternary International, 247, 294–312.CrossRefGoogle Scholar
  10. d’Errico, F., Salomon, H., Vignaud, C., and Stringer, C., 2010. Pigments from the Middle Palaeolithic levels of Es-Skhul (Mount Carmel, Israel). Journal of Archaeological Science, 37(12), 3099–3110.CrossRefGoogle Scholar
  11. Dayet, L., d’Errico, F., and Garcia-Moreno, R., 2014. Searching for consistencies in Châtelperronian pigment use. Journal of Archaeological Science, 44, 180–193.CrossRefGoogle Scholar
  12. Douka, K., Jacobs, Z., Lane, C., Grün, R., Farr, L., Hunt, C., Inglis, R. H., Reynolds, T., Albert, P., Aubert, M., Cullen, V. L., Hill, E., Kinsley, L., Roberts, R. G., Tomlinson, E. L., Wulf, S., and Barker, G., 2014. The chronostratigraphy of the Haua Fteah cave (Cyrenaica, northeast Libya). Journal of Human Evolution, 66, 39–63.CrossRefGoogle Scholar
  13. Echlin, P., 2009. Handbook of Sample Preparation for Scanning Electron Microscopy and X-Ray Microanalysis. New York: Springer.CrossRefGoogle Scholar
  14. Eren, M. I., Roos, C. I., Story, B. A., von Cramon-Taubadel, N., and Lycett, S. J., 2014. The role of raw material differences in stone tool shape variation: an experimental assessment. Journal of Archaeological Science, 49, 472–487.CrossRefGoogle Scholar
  15. Frahm, E., 2010. The Bronze-Age Obsidian Industry at Tell Mozan (Ancient Urkesh), Syria. PhD dissertation, Department of Anthropology, University of Minnesota. Online via the University of Minnesota’s Digital Conservancy, http://purl.umn.edu/99753.
  16. Frahm, E., 2012a. Distinguishing Nemrut Dağ and Bingöl A obsidians: geochemical and landscape differences and the archaeological implications. Journal of Archaeological Science, 39(5), 1436–1444.CrossRefGoogle Scholar
  17. Frahm, E., 2012b. Non-destructive sourcing of Bronze age near Eastern obsidian artefacts: redeveloping and reassessing electron microprobe analysis for obsidian sourcing. Archaeometry, 54(4), 623–642.CrossRefGoogle Scholar
  18. Frahm, E., and Feinberg, J. M., 2013a. Empires and resources: Central Anatolian obsidian at Urkesh (Tell Mozan, Syria) during the Akkadian period. Journal of Archaeological Science, 40(2), 1122–1135.CrossRefGoogle Scholar
  19. Frahm, E., and Feinberg, J. M., 2013b. Environment and collapse: Eastern Anatolian obsidians at Urkesh (Tell Mozan, Syria) and the third-millennium Mesopotamian urban crisis. Journal of Archaeological Science, 40(4), 1866–1878.CrossRefGoogle Scholar
  20. Goldberg, P., and Sherwood, S. C., 2006. Deciphering human prehistory through the geoarcheological study of cave sediments. Evolutionary Anthropology, 15(1), 20–36.CrossRefGoogle Scholar
  21. Goldberg, P., Dibble, H., Berna, F., Sandgathe, D., McPherron, S. J. P., and Turq, A., 2012. New evidence on Neandertal use of fire: examples from Roc de Marsal and Pech de l’Azé IV. Quaternary International, 247, 325–340.CrossRefGoogle Scholar
  22. Goldstein, J. I., Newberry, D. E., Echlin, P., Joy, D. C., Fiori, C., and Lifshin, E., 1981. Scanning Electron Microscopy and X-ray Microanalysis: A Text for Biologists, Materials Scientists, and Geologists. New York: Plenum Press.CrossRefGoogle Scholar
  23. Goldstein, J. I., Newbury, D. E., Joy, D. C., Lyman, C. E., Echlin, P., Lifshin, E., Sawyer, L., and Michael, J. R., 2003. Scanning Electron Microscopy and X-ray Microanalysis, 3rd edn. New York: Springer.CrossRefGoogle Scholar
  24. Gómez-Orellana, L., Ramil-Rego, P., Badal, E., Carrión Marco, Y., and Muñoz Sobrino, C., 2014. Mid-holocene vegetation dynamics in the Tejo River estuary based on palaeobotanical records from Ponta da Passadeira (Barreiro–Setúbal, Portugal). Boreas, 43(4), 792–806.CrossRefGoogle Scholar
  25. Hill, A. D., Lehman, A. H., and Parr, M. L., 2007. Using scanning electron microscopy with energy dispersive X-ray spectroscopy to analyze archaeological materials. Introducing scientific concepts and scientific literacy to students from all disciplines. Journal of Chemical Education, 84(5), 810–813.CrossRefGoogle Scholar
  26. Iriarte, E., Foyo, A., Sánchez, M. A., Tomillo, C., and Setién, J., 2009. The origin and geochemical characterization of red ochres from the Tito Bustillo and Monte Castillo Caves (Northern Spain). Archaeometry, 51(2), 231–251.CrossRefGoogle Scholar
  27. Karkanas, P., 2002. Micromorphological studies of Greek prehistoric sites: new insights in the interpretation of the archaeological record. Geoarchaeology, 17(3), 237–259.CrossRefGoogle Scholar
  28. Keller, J., and Seifried, C., 1990. The present status of obsidian source identification in Anatolia and the Near East. In Albore Livadie, C., and Widemann, F. (eds.), Volcanology and Archaeology: Proceedings of the European Workshops of Ravello, November 19–27, 1987 and March 30–31, 1989. Strasbourg: Council of Europe. PACT: Journal of the European Study Group on Physical, Chemical, Biological and Mathematical Techniques Applied to Archaeology 25, pp. 57–87.Google Scholar
  29. Lane, C. S., Blockley, S. P. E., Bronk Ramsey, C., and Lotter, A. F., 2011. Tephrochronology and absolute centennial scale synchronisation of European and Greenland records for the last glacial to interglacial transition: a case study of Soppensee and NGRIP. Quaternary International, 246(1–2), 145–156.CrossRefGoogle Scholar
  30. Lane, C. S., Cullen, V. L., White, D., Bramham-Law, C. W. F., and Smith, V. C., 2014. Cryptotephra as a dating and correlation tool in archaeology. Journal of Archaeological Science, 42, 42–50.CrossRefGoogle Scholar
  31. Lee, G.-A., Davis, A. M., Smith, D. G., and McAndrews, J. H., 2004. Identifying fossil wild rice (Zizania) pollen from Cootes Paradise, Ontario: a new approach using scanning electron microscopy. Journal of Archaeological Science, 31(4), 411–421.CrossRefGoogle Scholar
  32. Long, J. V. P., 1995. Microanalysis from 1950 to the 1990s. In Potts, P. J., Bowles, J. F. W., Reed, S. J. B., and Cave, M. R. (eds.), Microprobe Techniques in the Earth Sciences. London: Chapman & Hall. Mineralogical Society Series 6, pp. 1–48.CrossRefGoogle Scholar
  33. Lowe, J., Barton, N., Blockley, S., Bronk Ramsey, C., Cullen, V. L., Davies, W., Gamble, C., Grant, K., Hardiman, M., Housley, R., Lane, C. S., Lee, S., Lewis, M., MacLeod, A., Menzies, M., Müller, W., Pollard, M., Price, C., Roberts, A. P., Rohling, E. J., Satow, C., Smith, V. C., Stringer, C. B., Tomlinson, E. L., White, D., Albert, P., Arienzo, I., Barker, G., Borić, D., Carandente, A., Civetta, L., Ferrier, C., Guadelli, J.-L., Karkanas, P., Koumouzelis, M., Müller, U. C., Orsi, G., Pross, J., Rosi, M., Shalamanov-Korobar, L., Sirakov, N., and Tzedakis, P. C., 2012. Volcanic ash layers illuminate the resilience of Neanderthals and early modern humans to natural hazards. Proceedings of the National Academy of Sciences, 109(34), 13532–13537.CrossRefGoogle Scholar
  34. Lugliè, C., Le Bourdonnec, F.-X., Poupeau, G., Congia, C., Moretto, P., Calligaro, T., Sanna, I., and Dubernet, S., 2008. Obsidians in the Rio Saboccu (Sardinia, Italy) campsite: provenance, reduction and relations with the wider Early Neolithic Tyrrhenian area. Comptes Rendus-Palevol, 7(4), 249–258.CrossRefGoogle Scholar
  35. Madella, M., Jones, M. K., Goldberg, P., Goren, Y., and Hovers, E., 2002. The exploitation of plant resources by Neanderthals in Amud Cave (Israel): the evidence from phytolith studies. Journal of Archaeological Science, 29(7), 703–719.CrossRefGoogle Scholar
  36. Mallol, C., Mentzer, S. M., and Wrinn, P. J., 2009. A micromorphological and mineralogical study of site formation processes at the Late Pleistocene site of Obi-Rakhmat, Uzbekistan. Geoarchaeology, 24(5), 548–575.CrossRefGoogle Scholar
  37. McLaren, S., 2004. Characteristics, evolution and distribution of Quaternary channel calcretes, southern Jordan. Earth Surface Processes and Landforms, 29(12), 1487–1507.CrossRefGoogle Scholar
  38. Merrick, H. V., and Brown, F. H., 1984. Rapid chemical characterization of obsidian artifacts by electron microprobe analysis. Archaeometry, 26(2), 230–236.CrossRefGoogle Scholar
  39. Merrick, H. V., Brown, F. H., and Nash, B. P., 1994. Use and movement of obsidian in the Early and Middle Stone Ages of Kenya and northern Tanzania. In Childs, S. T. (ed.), Society, Culture, and Technology in Africa. Philadelphia: MASCA, University of Pennsylvania Museum of Archaeology and Anthropology. MASCA Research Papers in Science and Archaeology, Supplement to Vol. 11, pp. 29–44.Google Scholar
  40. Messager, E., Lordkipanidze, D., Ferring, C. R., and Deniaux, B., 2008. Fossil fruit identification by SEM investigations, a tool for palaeoenvironmental reconstruction of Dmanisi site, Georgia. Journal of Archaeological Science, 35(10), 2715–2725.CrossRefGoogle Scholar
  41. Monnier, G. F., Ladwig, J. L., and Porter, S. T., 2012. Swept under the rug: the problem of unacknowledged ambiguity in lithic residue identification. Journal of Archaeological Science, 39(10), 3284–3300.CrossRefGoogle Scholar
  42. Monnier, G. F., Hauck, T. C., Feinberg, J. M., Luo, B., Le Tensorer, J.-M., and Al Sakhel, H., 2013. A multi-analytical methodology of lithic residue analysis applied to Paleolithic tools from Hummal, Syria. Journal of Archaeological Science, 40(10), 3722–3739.CrossRefGoogle Scholar
  43. Mulazzani, S., Le Bourdonnec, F.-X., Belhouchet, L., Poupeau, G., Zoughlami, J., Dubernet, S., Tufano, E., Lefrais, Y., and Khedhaier, R., 2010. Obsidian from the Epipalaeolithic and Neolithic eastern Maghreb. A view from the Hergla context (Tunisia). Journal of Archaeological Science, 37(10), 2529–2537.CrossRefGoogle Scholar
  44. Nash, B. P., Merrick, H. V., and Brown, F. H., 2011. Obsidian types from Holocene sites around Lake Turkana, and other localities in northern Kenya. Journal of Archaeological Science, 38(6), 1371–1376.CrossRefGoogle Scholar
  45. Nicolaysen, K. P., and Ritterbush, L. W., 2005. Critical thinking in geology and archaeology: interpreting scanning electron microscope images of a lithic tool. Journal of Geoscience Education, 53(2), 166–172.CrossRefGoogle Scholar
  46. Olsen, S. L., 1988. Applications of scanning electron microscopy in archaeology. Advances in Electronics and Electron Physics, 71, 357–380.CrossRefGoogle Scholar
  47. Olsen, S. L. (ed.), 1988a. Scanning Electron Microscopy in Archaeology. British Archaeological Reports, International Series 452. Oxford: British Archaeological Reports.Google Scholar
  48. Orange, M., Carter, T., and Le Bourdonnec, F.-X., 2013. Sourcing obsidian from Tell Aswad and Qdeir 1 (Syria) by SEM-EDS and EDXRF: methodological implications. Comptes Rendus Palevol, 12(3), 173–180.CrossRefGoogle Scholar
  49. Peruzzo, L., Fenzi, F., and Vigato, P. A., 2011. Electron backscatter diffraction (EBSD): a new technique for the identification of pigments and raw materials in historic glasses and ceramics. Archaeometry, 53(1), 178–193.CrossRefGoogle Scholar
  50. Pilcher, J. R., 1968. Some applications of scanning electron microscopy to the study of modern and fossil pollen. Ulster Journal of Archaeology, 31, 87–91. 3rd series.Google Scholar
  51. Pirrie, D., Rollinson, G. K., Andersen, J. C., Wootton, D., and Moorhead, S., 2014. Soil forensics as a tool to test reported artefact find sites. Journal of Archaeological Science, 41, 461–473.CrossRefGoogle Scholar
  52. Ponomarev, L. I., 1993. The Quantum Dice. Boca Raton: CRC Press.Google Scholar
  53. Ponting, M., 2004. The scanning electron microscope and the archaeologist. Physics Education, 39(2), 166–170.CrossRefGoogle Scholar
  54. Poupeau, G., Le Bourdonnec, F.-X., Carter, T., Delerue, S., Shackley, M. S., Barrat, J.-A., Dubernet, S., Moretto, P., Calligaro, T., Milić, M., and Kobayashi, K., 2010. The use of SEM-EDS, PIXE and EDXRF for obsidian provenance studies in the Near East: a case study from Neolithic Çatalhöyük (central Anatolia). Journal of Archaeological Science, 37(11), 2705–2720.CrossRefGoogle Scholar
  55. Reed, S. J. B., 2005. Electron Microprobe Analysis and Scanning Electron Microscopy in Geology, 2nd edn. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  56. Reepmeyer, C., Spriggs, M., Anggraeni, Lape, P., Neri, L., Ronquillo, W. P., Simanjuntak, T., Summerhayes, G., Tanudirjo, D., and Tiauzon, A., 2011. Obsidian sources and distribution systems in Island Southeast Asia: new results and implications from geochemical research using LA-ICPMS. Journal of Archaeological Science, 38(11), 2995–3005.CrossRefGoogle Scholar
  57. Salomon, H., Vignaud, C., Coquinot, Y., Beck, L., Stringer, C., Strivay, D., and d’Errico, F., 2012. Selection and heating of colouring materials in the Mousterian level of es-Skhul (c. 100 000 years BP, Mount Carmel, Israel). Archaeometry, 54(4), 698–722.CrossRefGoogle Scholar
  58. Sanna, I., Le Bourdonnec, F.-X., Poupeau, G., and Lugliè, C., 2010. Ossidiane non sarde in Sardegna. Analisi di un rinvenimento subacqueo nel Porto di Cagliari. In Lugliè, C. (ed.), L’ossidiana del monte Arci nel Mediterraneo: Nuovi apporti sulla diffusione, sui sistemi di produzione e sulla loro cronologia: Atti del 5. Convegno Internazionale (Pau, Italia, 27–29 giugno 2008). Ales: Nur, pp. 99–119.Google Scholar
  59. Schiegl, S., Goldberg, P., Pfretzschner, H.-U., and Conard, N. J., 2003. Paleolithic burnt bone horizons from the Swabian Jura: distinguishing between in situ fireplaces and dumping areas. Geoarchaeology, 18(5), 541–565.CrossRefGoogle Scholar
  60. Sulpizio, R., Zanchetta, G., D’Orazio, M., Vogel, H., and Wagner, B., 2010. Tephrostratigraphy and tephrochronology of lakes Ohrid and Prespa, Balkans. Biogeosciences, 7(10), 3273–3288.CrossRefGoogle Scholar
  61. Summerhayes, G. R., Kennedy, J., Matisoo-Smith, E., Mandui, H., Ambrose, W., Allen, C., Reepmeyer, C., Torrence, R., and Wadra, F., 2014. Lepong: a new obsidian source in the Admiralty Islands, Papua New Guinea. Geoarchaeology, 29(3), 238–248.CrossRefGoogle Scholar
  62. Tripati, S., Mudholkar, A., Vora, K. H., Rao, B. R., Gaur, A. S., and Sundaresh, 2010. Geochemical and mineralogical analysis of stone anchors from west coast of India: provenance study using thin sections, XRF, and SEM-EDS. Journal of Archaeological Science, 37(8), 1999–2009.CrossRefGoogle Scholar
  63. Tryon, C. A., Logan, M. A. V., Mouralis, D., Kuhn, S., Slimak, L., and Balkan-Atlı, N., 2009. Building a tephrostratigraphic framework for the Paleolithic of Central Anatolia, Turkey. Journal of Archaeological Science, 36(3), 637–652.CrossRefGoogle Scholar
  64. Tykot, R. H., 1997. Characterization of the Monte Arci (Sardinia) obsidian sources. Journal of Archaeological Science, 24(5), 467–479.CrossRefGoogle Scholar
  65. Van Hoesen, J., and Arriaza, B., 2011. Characterizing the micromorphology of sediments associated with Chinchorro mummification in Arica, Chile using SEM and EDS. Archaeometry, 53(5), 986–995.CrossRefGoogle Scholar
  66. Weiner, S., 2010. Microarchaeology: Beyond the Visible Archaeological Record. Cambridge: Cambridge University Press.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of AnthropologyUniversity of Minnesota-Twin CitiesMinneapolisUSA