Encyclopedia of Geoarchaeology

2017 Edition
| Editors: Allan S. Gilbert


  • Christine LaneEmail author
  • Jamie Woodward
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-4409-0_185


Tephra: Unconsolidated pyroclastic material explosively ejected during a volcanic eruption. Tephra includes blocks (>32 mm), lapilli (4–32 mm), and ash (<4 mm). Tephra was often called tuff in the early archaeological literature.

Volcanic ash: The finest and most voluminous tephra fraction composed mostly of shards of glass formed by the rapid cooling and explosive breakup of magma during an eruption.

Tephrochronology: The dating of sequences according to the age of layers of tephra preserved within.

Tephrostratigraphy: The use of volcanic ash layers as relative dating horizons. Tephra layers from a single eruption event can be used to correlate sequences precisely that may be some distance apart.

Cryptotephra: Tephra within a sequence that is not visible to the naked eye and may be detected only using instrumental core scanning techniques or by laboratory processing of sediments.


Tephra is the debris ejected into the atmosphere during explosive volcanic...
This is a preview of subscription content, log in to check access.


  1. Albert, P. G., Hardiman, M., Keller, J., Tomlinson, E. L., Smith, V. C., Bourne, A. J., Wulf, S., Zanchetta, G., Sulpizio, R., Müller, U. C., Pross, J., Ottolini, L., Matthews, I. P., Blockley, S. P. E., and Menzies, M. A., 2015. Revisiting the Y-3 tephrostratigraphic marker: a new diagnostic glass geochemistry, age estimate, and details on its climatostratigraphical context. Quaternary Science Reviews, 118, 105–121.CrossRefGoogle Scholar
  2. Baales, M., Jöris, O., Street, M., Bittmann, F., Weninger, B., and Wiethold, J., 2002. Impact of the Late Glacial eruption of the Laacher See Volcano, Central Rhineland, Germany. Quaternary Research, 53(3), 273–288.CrossRefGoogle Scholar
  3. Bailey, G. N., and Woodward, J. C., 1997. The Klithi deposits: sedimentology, stratigraphy and chronology. In Bailey, G. N. (ed.), Klithi: Palaeolithic Settlement and Quaternary Landscapes in Northwest Greece. Cambridge: McDonald Institute for Archaeological Research. Excavation and Intra-Site Analysis at Klithi, Vol. 1, pp. 61–94.Google Scholar
  4. Blockley, S. P. E., Pyne-O’Donnell, S. D. F., Lowe, J. J., Matthews, I. P., Stone, A., Pollard, A. M., Turney, C. S. M., and Molyneux, E. G., 2005. A new and less destructive laboratory procedure for the physical separation of distal glass tephra shards from sediments. Quaternary Science Reviews, 24(16–17), 1952–1960.CrossRefGoogle Scholar
  5. Blockley, S. P. E., Bronk Ramsey, C., and Pyle, D. M., 2008. Improved age modelling and high-precision age estimates of late Quaternary tephras, for accurate palaeoclimate reconstruction. Journal of Volcanology and Geothermal Research, 177(1), 251–262.CrossRefGoogle Scholar
  6. Brauer, A., Endres, C., and Negendank, J. F. W., 1999. Lateglacial calendar year chronology based on annually laminated sediments from Lake Meerfelder Maar, Germany. Quaternary International, 61(1), 17–25.CrossRefGoogle Scholar
  7. Buck, C. E., Higham, T. F. G., and Lowe, D. J., 2003. Bayesian tools for tephrochronology. The Holocene, 13(5), 639–647.CrossRefGoogle Scholar
  8. Clift, P., and Blusztajn, J., 1999. The trace-element characteristics of Aegean and Aeolian volcanic arc marine tephra. Journal of Volcanology and Geothermal Research, 92(3–4), 321–347.CrossRefGoogle Scholar
  9. Davies, S. M., Branch, N. P., Lowe, J. J., and Turney, C. S. M., 2002. Towards a European tephrochronological framework for termination 1 and the early Holocene. Philosophical Transactions of the Royal Society: Mathematical Physical and Engineering Sciences A, 360(1793), 767–802.CrossRefGoogle Scholar
  10. Deino, A. L., and McBrearty, S., 2002. 40Ar/39Ar dating of the Kapthurin Formation, Baringo, Kenya. Journal of Human Evolution, 42(1–2), 185–210.CrossRefGoogle Scholar
  11. Douka, K., Higham, T., and Sinitsyn, A., 2010. The influence of pretreatment chemistry on the radiocarbon dating of Campanian Ignimbrite-aged charcoal from Kostenki 14 (Russia). Quaternary Research, 73(3), 583–587.CrossRefGoogle Scholar
  12. Douka, K., Jacobs, Z., Lane, C., Grün, R., Farr, L., Hunt, C., Inglis, R. H., Reynolds, T., Albert, P., Aubert, M., Cullen, V., Hill, E., Kinsley, L., Roberts, R. G., Tomlinson, E. L., Wulf, S., and Barker, G., 2014. The chronostratigraphy of the Haua Fteah cave (Cyrenaica, northeast Libya). Journal of Human Evolution, 66, 39–63.CrossRefGoogle Scholar
  13. Dugmore, A., 1989. Icelandic volcanic ash in Scotland. Scottish Geographical Magazine, 105(3), 168–172.CrossRefGoogle Scholar
  14. Dugmore, A. J., 1991. Tephrochronology and UK archaeology. In Budd, P., Chapman, C., Jackson, C., Janaway, R., and Ottoway, B. (eds.), Archaeological Science: Proceedings of a Conference on the Application of Scientific Techniques to Archaeology, Bradford, September 1989. Oxford: Oxbow Books. Oxbow Monograph, Vol. 9, pp. 242–250.Google Scholar
  15. Farrand, W. R., 2000. Depositional History of Franchthi Cave: Stratigraphy, Sedimentology, and Chronology. Bloomington: Indiana University Press. Excavations at Franchthi Cave, Greece, fasc. 12.Google Scholar
  16. Friedrich, W. L., Kromer, B., Friedrich, M., Heinemeier, J., Pfeiffer, T., and Talamo, S., 2006. Santorini eruption radiocarbon dated to 1627–1600 BC. Science, 312(5773), 548.CrossRefGoogle Scholar
  17. Gehrels, M. J., Newnham, R. M., Lowe, D. J., Wynne, S., Hazell, Z. J., and Caseldine, C., 2008. Towards rapid assay of cryptotephra in peat cores: review and evaluation of various methods. Quaternary International, 178(1), 68–84.CrossRefGoogle Scholar
  18. Housley, R. A., Lane, C. S., Cullen, V. L., Weber, M.-J., Riede, F., Gamble, C. S., and Brock, F., 2012. Icelandic volcanic ash from the Late-glacial open-air archaeological site of Ahrenshöft LA 58 D, North Germany. Journal of Archaeological Science, 39(3), 708–716.CrossRefGoogle Scholar
  19. Katoh, S., Nagaoka, S., WoldeGabriel, G., Renne, P., Snow, M. G., Beyene, Y., and Suwa, G., 2000. Chronostratigraphy and correlation of the Plio-Pleistocene tephra layers of the Konso Formation, southern Main Ethiopian Rift, Ethiopia. Quaternary Science Reviews, 19(13), 1305–1317.CrossRefGoogle Scholar
  20. Kuehn, S. C., Froese, D. G., and Shane, P. A. R., 2011. The INTAV intercomparison of electron-beam microanalysis of glass by tephrochronology laboratories: results and recommendations. Quaternary International, 246(1–2), 19–47.CrossRefGoogle Scholar
  21. Kylander, M. E., Lind, E. M., Wastegård, S., and Löwemark, L., 2012. Recommendations for using XRF core scanning as a tool in tephrochronology. The Holocene, 22(3), 371–375.CrossRefGoogle Scholar
  22. Lane, C. S., Blockley, S. P. E., Mangerud, J., Smith, V. C., Lohne, Ø. S., Tomlinson, E. L., Matthews, I. P., and Lotter, A. F., 2012. Was the 12.1 ka Icelandic Vedde Ash one of a kind? Quaternary Science Reviews, 33, 87–99.CrossRefGoogle Scholar
  23. Lane, C. S., Cullen, V. L., White, D., Bramham-Law, C. W. F., and Smith, V. C., 2014. Cryptotephra as a dating and correlation tool in archaeology. Journal of Archaeological Science, 42, 42–50.CrossRefGoogle Scholar
  24. Lee, S., Bronk Ramsey, C., and Hardiman, M., 2013. Modeling the age of the Cape Riva (Y-2) tephra. Radiocarbon, 55(2–3), 741–747.Google Scholar
  25. Lowe, D. J., and Hunt, J. B., 2001. A summary of terminology used in tephra-related studies. In Juvigné, E. H., and Raynal, J.-P. (eds.), Tephras: chronologie, archéologie: actes du colloque, à Brives-Charensac (Haute-Loire), du 28 au 29 août 1998. Goudet: Centre de documentation et de recherches archéologiques départemental d’Auvergne. Les Dossiers de l’Archéo-Logis, Vol. 1, pp. 17–22.Google Scholar
  26. Lowe, J., Barton, N., Blockley, S., Bronk Ramsey, C., Cullen, V. L., Davies, W., Gamble, C., Grant, K., Hardiman, M., Housley, R., Lane, C. S., Lee, S., Lewis, M., MacLeod, A., Menzies, M., Müller, W., Pollard, M., Price, C., Roberts, A. P., Rohling, E. J., Satow, C., Smith, V. C., Stringer, C. B., Tomlinson, E. L., White, D., Albert, P., Arienzo, I., Barker, G., Borić, D., Carandente, A., Civetta, L., Ferrier, C., Guadelli, J.-L., Karkanas, P., Koumouzelis, M., Müller, U. C., Orsi, G., Pross, J., Rosi, M., Shalamanov-Korobar, L., Sirakov, N., and Tzedakis, P. C., 2012. Volcanic ash layers illuminate the resilience of Neanderthals and early modern humans to natural hazards. Proceedings of the National Academy of Sciences, 109(34), 13532–13537.CrossRefGoogle Scholar
  27. Manning, S. W., Bronk Ramsey, C., Kutschera, W., Higham, T., Kromer, B., Steier, P., and Wild, E. M., 2006. Chronology for the Aegean Late Bronze Age 1700–1400 B.C. Science, 312(5773), 565–569.CrossRefGoogle Scholar
  28. Mark, D. F., Petraglia, M., Smith, V. C., Morgan, L. E., Barfod, D. N., Ellis, B. S., Pearce, N. J., Pal, J. N., and Korisettar, R., 2014. A high-precision 40Ar/39Ar age for the Young Toba Tuff and dating of ultra-distal tephra: forcing of quaternary climate and implications for hominin occupation of India. Quaternary Geochronology, 21, 90–103.CrossRefGoogle Scholar
  29. Morgan, L. E., and Renne, P. R., 2008. Diachronous dawn of Africa’s Middle Stone Age: new 40Ar/39Ar ages from the Ethiopian Rift. Geology, 36(12), 967–970.CrossRefGoogle Scholar
  30. Morley, M. W., and Woodward, J. C., 2011. The Campanian Ignimbrite (Y5) tephra at Crvena Stijena Rockshelter, Montenegro. Quaternary Research, 75(3), 683–696.CrossRefGoogle Scholar
  31. Pearce, N. J. G., Denton, J. S., Perkins, W. T., Westgate, J. A., and Alloway, B. V., 2007. Correlation and characterisation of individual glass shards from tephra deposits using trace element laser ablation ICP-MS analyses: current status and future potential. Journal of Quaternary Science, 22(7), 721–736.CrossRefGoogle Scholar
  32. Petraglia, M., Korisettar, R., Boivin, N., Clarkson, C., Ditchfield, P., Jones, S., Koshy, J., Lahr, M. M., Oppenheimer, C., Pyle, D., Roberts, R., Schwenninger, J.-L., Arnold, L., and White, K., 2007. Middle Paleolithic assemblages from the Indian subcontinent before and after the Toba super-eruption. Science, 317(5834), 114–116.CrossRefGoogle Scholar
  33. Plunkett, G., 2009. Land-use patterns and cultural change in the Middle to Late Bronze Age in Ireland: inferences from pollen records. Vegetation History and Archaeobotany, 18(4), 273–295.CrossRefGoogle Scholar
  34. Pollard, A. M., Blockley, S. P. E., and Ward, K. R., 2003. Chemical alteration of tephra in the depositional environment: theoretical stability modelling. Journal of Quaternary Science, 18(5), 385–394.CrossRefGoogle Scholar
  35. Pyle, D. M., Ricketts, G. D., Margari, V., van Andel, T. H., Sinitsyn, A. A., Praslov, N. D., and Lisitsyn, S., 2006. Wide dispersal and deposition of distal tephra during the Pleistocene ‘Campanian Ignimbrite/Y5’ eruption, Italy. Quaternary Science Reviews, 25(21–22), 2713–2728.CrossRefGoogle Scholar
  36. Rasmussen, S. O., Andersen, K. K., Svensson, A. M., Steffensen, J. P., Vinther, B. M., Clausen, H. B., Siggaard-Andersen, M.-L., Johnsen, S. J., Larsen, L. B., Dahl-Jensen, D., Bigler, M., Röthlisberger, R., Fischer, H., Goto-Azuma, K., Hansson, M. E., and Ruth, U., 2006. A new Greenland ice core chronology for the last glacial termination. Journal of Geophysical Research, D: Atmospheres, 111(D6), D06102.CrossRefGoogle Scholar
  37. Riede, F., 2008. The Laacher See-eruption (12,920 BP) and material culture change at the end of the Allerød in Northern Europe. Journal of Archaeological Science, 35(3), 591–599.CrossRefGoogle Scholar
  38. Sarna-Wojcicki, A. M., Meyer, C. E., Roth, P. H., and Brown, F. H., 1985. Ages of tuff beds at East African early hominid sites and sediments in the Gulf of Aden. Nature, 313(6000), 306–308.CrossRefGoogle Scholar
  39. Shane, P., Alloway, B., Black, T., and Westgate, J., 1996. Isothermal plateau fission-track ages of tephra beds in an early-middle Pleistocene marine and terrestrial sequence, Cape Kidnappers, New Zealand. Quaternary International, 34–36, 49–53.CrossRefGoogle Scholar
  40. Smith, V. C., Shane, P., and Nairn, I. A., 2005. Trends in rhyolite geochemistry, mineralogy, and magma storage during the last 50 kyr at Okataina and Taupo volcanic centres, Taupo Volcanic Zone, New Zealand. Journal of Volcanology and Geothermal Research, 148(3–4), 372–406.CrossRefGoogle Scholar
  41. Smith, V. C., Pearce, N. J. G., Matthews, N. E., Westgate, J. A., Petraglia, M. D., Haslam, M., Lane, C. S., Korisettar, R., and Pal, J. N., 2011. Geochemical fingerprinting of the widespread Toba tephra using biotite compositions. Quaternary International, 246(1–2), 97–104.CrossRefGoogle Scholar
  42. Storey, M., Roberts, R. G., and Saidin, M., 2012. Astronomically calibrated 40Ar/39Ar age for the Toba supereruption and global synchronization of late Quaternary records. Proceedings of the National Academy of Sciences, 109(46), 18684–18688.CrossRefGoogle Scholar
  43. Thorarinsson, S., 1954. The tephra-fall from Hekla on March 29th 1947. In Einarsson, T., Kjartansson, G., and Thorarinsson, S. (eds.), The Eruption of Hekla 1947–48. Reykjavik: Vísindafélag Íslendinga and the Museum of Natural History, Reykjavík, Vol. 2. no. 3.Google Scholar
  44. Tomlinson, E. L., Thordarson, T., Müller, W., Thirlwall, M., and Menzies, M. A., 2010. Microanalysis of tephra by LA-ICP-MS – strategies, advantages and limitations assessed using the Thorsmörk ignimbrite (Southern Iceland). Chemical Geology, 279(3–4), 73–89.CrossRefGoogle Scholar
  45. Tryon, C. A., and McBrearty, S., 2006. Tephrostratigraphy of the Bedded Tuff Member (Kapthurin Formation, Kenya) and the nature of archaeological change in the later Middle Pleistocene. Quaternary Research, 65(3), 492–507.CrossRefGoogle Scholar
  46. Turney, C. S. M., 1998. Extraction of rhyolitic component of Vedde microtephra from minerogenic lake sediments. Journal of Paleolimnology, 19(2), 199–206.CrossRefGoogle Scholar
  47. Turney, C. S. M., Harkness, D. D., and Lowe, J. J., 1997. The use of microtephra horizons to correlate Late-glacial lake sediment successions in Scotland. Journal of Quaternary Science, 12(6), 525–531.CrossRefGoogle Scholar
  48. Turney, C. S. M., Lowe, J. J., Davies, S. M., Hall, V., Lowe, D. J., Wastegård, S., Hoek, W. Z., and Alloway, B., 2004. Tephrochronology of last termination sequences in Europe: a protocol for improved analytical precision and robust correlation procedures (a joint SCOTAV-INTIMATE proposal). Journal of Quaternary Science, 19(2), 111–120.CrossRefGoogle Scholar
  49. Vitaliano, C. J., Taylor, S. R., Farrand, W. R., and Jacobsen, T. W., 1981. Tephra layer in Franchthi Cave, Peleponnesos, Greece. In Self, S., and Sparks, R. S. J. (eds.), Tephra Studies: Proceedings of the NATO Advanced Study Institute “Tephra Studies as a Tool in Quaternary Research,” Held in Laugarvatn and Reykjavîk, Iceland, June 18–29, 1980. Dordrecht: D. Reidel. NATO Advanced Study Institutes, Series C, Mathematical and Physical Sciences, Vol. 75, pp. 373–379.CrossRefGoogle Scholar
  50. WoldeGabriel, G., Hart, W. K., Katoh, S., Beyene, Y., and Suwa, G., 2005. Correlation of Plio-Pleistocene tephra in Ethiopian and Kenyan rift basins: temporal calibration of geological features and hominid fossil records. Journal of Volcanology and Geothermal Research, 147(1–2), 81–108.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Geography, School of Environment, Education and DevelopmentThe University of ManchesterManchesterUK