Skip to main content

Soil Geomorphology

  • Reference work entry
  • First Online:
Encyclopedia of Geoarchaeology

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 299 Accesses

Introduction

Few aspects of the environment are as intimately linked to the landscape as are soils, and this linkage emphasizes the important role of soils in geoarchaeology. At its most fundamental level, soil geomorphology is the study of genetic relationships between soils and landscapes (e.g., Ruhe, 1956; Ruhe, 1965; Schaetzl and Anderson, 2005). Its focus is on pedogenic and geomorphic processes and sometimes a strong component of hydrology in order to understand the distribution of soils in the present (contemporary soil geography) and in the past. In a much broader sense, however, soil geomorphology includes the investigation of soils as a means of studying and reconstructing the past, with a focus on soils as (1) clues to past environments (especially vegetation and climate) and past landscapes (Gerrard, 1992; Birkeland, 1999; Schaetzl and Anderson, 2005), (2) age indicators, and (3) stratigraphic markers (see the entry on “Soil Stratigraphy” in this volume). The focus here is...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Anderton, J. B., 1999. The soil-artifact context model: a geoarchaeological approach to paleoshoreline site dating in the Upper Peninsula of Michigan USA. Geoarchaeology, 14(3), 265–288.

    Article  Google Scholar 

  • Artz, J. A., 1985. A soil-geomorphic approach to locating buried Late-Archaic sites in northeast Oklahoma. American Archaeology, 5(2), 142–150.

    Google Scholar 

  • Ashley, G. M., and Driese, S. G., 2000. Paleopedology and paleohydrology of a volcaniclastic paleosol interval: implications for early Pleistocene stratigraphy and paleoclimate record, Olduvai Gorge, Tanzania. Journal of Sedimentary Research, 70(5), 1065–1080.

    Article  Google Scholar 

  • Beach, T., 1998. Soil constraints on northwest Yucatán, Mexico: pedoarchaeology and Maya subsistence at Chunchucmil. Geoarchaeology, 13(8), 759–791.

    Article  Google Scholar 

  • Beeton, J. M., and Mandel, R. D., 2011. Soils and Late-Quaternary landscape evolution in the Cottonwood River basin, east-central Kansas: implications for archaeological research. Geoarchaeology, 26(5), 693–723.

    Article  Google Scholar 

  • Bettis, E. A., III, 1992. Soil morphologic properties and weathering zone characteristics as age indicators in Holocene alluvium in the Upper Midwest. In Holliday, V. T. (ed.), Soils in Archaeology: Landscape Evolution and Human Occupation. Washington, DC: Smithsonian Institution Press, pp. 119–144.

    Google Scholar 

  • Bettis, E. A., III, and Hajic, E. R., 1995. Landscape development and the location of evidence of Archaic cultures in the Upper Midwest. In Bettis, E. A., III (ed.), Archaeological Geology of the Archaic Period in North America. Boulder, CO: Geological Society of America. GSA Special Paper 297, pp. 87–114.

    Google Scholar 

  • Birkeland, P. W., 1999. Soils and Geomorphology, 3rd edn. New York: Oxford University Press.

    Google Scholar 

  • Birkeland, P. W., and Burke, R. M., 1988. Soil catena chronosequences on eastern Sierra Nevada moraines, California, U.S.A. Arctic and Alpine Research, 20(4), 473–484.

    Article  Google Scholar 

  • Dethier, D. P., 1988. The Soil Chronosequence along the Cowlitz River, Washington. Washington, DC: Government Printing Office. US Geological Survey Bulletin 1590-F.

    Google Scholar 

  • Ferring, C. R., 1986. Rate of fluvial sedimentation: implications for archaeological variability. Geoarchaeology, 1(3), 259–274.

    Article  Google Scholar 

  • Ferring, C. R., 1992. Alluvial pedology and geoarchaeological research. In Holliday, V. T. (ed.), Soils in Archaeology: Landscape Evolution and Human Occupation. Washington, DC: Smithsonian Institution Press, pp. 1–39.

    Google Scholar 

  • Gerrard, J., 1992. Soil Geomorphology: An Integration of Pedology and Geomorphology. London: Chapman and Hall.

    Google Scholar 

  • Gile, L. H., Hawley, J. W., and Grossman, R. B., 1981. Soils and Geomorphology in the Basin and Range Area of Southern New Mexico: Guidebook to the Desert Project. Socorro, NM: New Mexico Bureau of Mines and Mineral Resources. Memoir 39.

    Google Scholar 

  • Harden, J. W., 1982. A quantitative index of soil development from field descriptions: examples from a chronosequence in central California. Geoderma, 28(1), 1–28.

    Article  Google Scholar 

  • Holliday, V. T., 1985a. Morphology of late Holocene soils at the Lubbock Lake archeological site, Texas. Soil Science Society of America Journal, 49(4), 938–946.

    Article  Google Scholar 

  • Holliday, V. T., 1985b. Early Holocene soils at the Lubbock Lake archeological site, Texas. Catena, 12(1), 61–78.

    Article  Google Scholar 

  • Holliday, V. T., 1985c. Archaeological geology of the Lubbock Lake site, Southern High Plains of Texas. Geological Society of America Bulletin, 96(12), 1483–1492.

    Article  Google Scholar 

  • Holliday, V. T., 1990. Pedology in archaeology. In Lasca, N. P., and Donahue, J. (eds.), Archaeological Geology of North America. Boulder, CO: Geological Society of America. GSA Centennial, Vol. 4, pp. 525–540.

    Google Scholar 

  • Holliday, V. T., 1992. Soil formation, time, and archaeology. In Holliday, V. T. (ed.), Soils in Archaeology: Landscape Evolution and Human Occupation. Washington, DC: Smithsonian Institution Press, pp. 101–117.

    Google Scholar 

  • Holliday, V. T., 2004. Soils in Archaeological Research. New York: Oxford University Press.

    Google Scholar 

  • Hoyer, B. E., 1980. The geology of the Cherokee Sewer Site. In Anderson, D. C., and Semken, H. A., Jr. (eds.), The Cherokee Excavations: Holocene Ecology and Human Adaptations in Northwestern Iowa. New York: Academic, pp. 21–66.

    Google Scholar 

  • Karlstrom, E. T., 1988. Rates of soil formation on Black Mesa, northeast Arizona: a chronosequence in late Quaternary alluvium. Physical Geography, 9(4), 301–327.

    Google Scholar 

  • Knuepfer, P. L. K., and McFadden, L. D. (eds.), 1990. Soils and Landscape Evolution: Proceedings of the 21st Binghamton Symposium. Amsterdam: Elsevier.

    Google Scholar 

  • Kraus, M. J., and Bown, T. M., 1986. Paleosols and time resolution in alluvial stratigraphy. In Wright, V. P. (ed.), Paleosols: Their Recognition and Interpretation. Princeton: Princeton University Press, pp. 180–207.

    Google Scholar 

  • Mandel, R. D., 1992. Soils and Holocene landscape evolution in central and southwestern Kansas: implications for archaeological research. In Holliday, V. T. (ed.), Soils in Archaeology: Landscape Evolution and Human Occupation. Washington, DC: Smithsonian Institution Press, pp. 41–117.

    Google Scholar 

  • Mandel, R. D., 2006. The effects of late quaternary landscape evolution on the archaeology of Kansas. In Hoard, R. J., and Banks, W. E. (eds.), Kansas Archaeology. Lawrence, KS: University Press of Kansas, pp. 46–75.

    Google Scholar 

  • Mandel, R. D., 2008. Buried Paleoindian-age landscapes in stream valleys of the Central Plains, USA. Geomorphology, 101(1–2), 342–361.

    Article  Google Scholar 

  • Mandel, R. D., and Bettis, E. A., III, 2001a. Use and analysis of soils by archaeologists and geoscientists: a North American perspective. In Goldberg, P., Holliday, V. T., and Ferring, C. R. (eds.), Earth Sciences and Archaeology. New York: Kluwer Academic/Plenum Publishers, pp. 173–204.

    Chapter  Google Scholar 

  • Mandel, R. D., and Bettis, E. A., III, 2001b. Late Quaternary Landscape Evolution in the South Fork of the Big Nemaha River Valley, Southeastern Nebraska and Northeastern Kansas. Lincoln, NE: Conservation and Survey Division, Institute of Agriculture and Natural Resources, University of Nebraska at Lincoln. Guidebook No. 11.

    Google Scholar 

  • McFadden, L. D., and Weldon, R. J., II, 1987. Rates and processes of soil development on Quaternary terraces in Cajon Pass, California. Geological Society of America Bulletin, 98(3), 280–293.

    Article  Google Scholar 

  • Michlovic, M. G., Hopkins, D. G., and Richardson, J. L., 1988. An interdisciplinary procedure for the identification and study of archaeological sites in sedimentary contexts. Soil Survey Horizons, 29(1), 3–8.

    Article  Google Scholar 

  • Picha, P. R., and Gregg, M. L., 1993. Chronostratigraphy of Upper James River floodplain sediments: implications for southeastern North Dakota archaeology. Geoarchaeology, 8(3), 203–215.

    Article  Google Scholar 

  • Pope, K. O., and van Andel, T. H., 1984. Late Quaternary alluviation and soil formation in the southern Argolid: its history, causes and archaeological implications. Journal of Archaeological Science, 11(4), 281–306.

    Article  Google Scholar 

  • Robertson-Rintoul, M. S. E., 1986. A quantitative soil-stratigraphic approach to the correlation and dating of post-glacial river terraces in Glen Feshie, western Cairngorms. Earth Surface Processes and Landforms, 11(6), 605–617.

    Article  Google Scholar 

  • Ruhe, R. V., 1956. Geomorphic surfaces and the nature of soils. Soil Science, 82(6), 441–456.

    Article  Google Scholar 

  • Ruhe, R. V., 1965. Quaternary paleopedology. In Wright, H. E., and Frey, D. G. (eds.), The Quaternary of the United States. Princeton: Princeton University Press.

    Google Scholar 

  • Schaetzl, R. J., and Anderson, S., 2005. Soils: Genesis and Geomorphology. New York: Cambridge University Press.

    Book  Google Scholar 

  • Stafford, C. R., 1995. Geoarchaeological perspectives on paleolandscapes and regional subsurface archaeology. Journal of Archaeological Method and Theory, 2(1), 69–104.

    Article  Google Scholar 

  • Van Andel, T. H., 1998. Paleosols, red sediments, and the Old Stone Age in Greece. Geoarchaeology, 13(4), 361–390.

    Article  Google Scholar 

  • Vreeken, W. J., 1975. Principal kinds of chronosequences and their significance in soil history. Journal of Soil Science, 26(4), 378–394.

    Article  Google Scholar 

  • Yaalon, D. H., 1971. Soil-forming processes in time and space. In Yaalon, D. H. (ed.), Paleopedology: Origin, Nature and Dating of Paleosols. Jerusalem: International Society of Soil Science and Israel Universities Press, pp. 29–39.

    Google Scholar 

  • Yaalon, D. H., 1975. Conceptual models in pedogenesis: can soil-forming functions be solved? Geoderma, 14(3), 189–205.

    Article  Google Scholar 

  • Yaalon, D. H., 1983. Climate, time and soil development. In Wilding, L. P., Smeck, N. E., and Hall, G. F. (eds.), Pedogenesis and Soil Taxonomy: Part 1, Concepts and Interactions. Amsterdam: Elsevier. Developments in Soil Science 11A, pp. 233–251.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vance T. Holliday .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Holliday, V.T., Mandel, R.D. (2017). Soil Geomorphology. In: Gilbert, A.S. (eds) Encyclopedia of Geoarchaeology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4409-0_175

Download citation

Publish with us

Policies and ethics