Encyclopedia of Geoarchaeology

2017 Edition
| Editors: Allan S. Gilbert

Speleothems

Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-4409-0_161

Definition

The term speleothem is used to cover all secondary chemical deposits in caves and, occasionally, of mines in limestone (karst) terrains. Its etymology is from the Greek “spēlaion” (or cave) and “thema” (or deposit). For a more specialist account of karst and speleology, see Ford and Williams (2007).

Introduction

Most people are familiar with the commonest forms of speleothems: stalactites, stalagmites, and flowstones. Their main relevance to the archaeology of caves stems from (1) their association with hominin and faunal remains or with artifacts such as stone tools, (2) the continuous records of climate change they contain, and (3) the fact that they can be reliably dated back hundreds of thousands of years and, in some cases, even millions of years. Thus, the dating of speleothems has contributed significantly to constructing a chronology of the stages of human evolution. This is because hominin remains are frequently well preserved in the alkaline environment of caves...

This is a preview of subscription content, log in to check access

Bibliography

  1. Barkai, R., Gopher, A., Lauritzen, S. E., and Frumkin, A., 2003. Uranium series dates from Qesem Cave, Israel, and the end of the lower Palaeolithic. Nature, 423(6943), 977–979.CrossRefGoogle Scholar
  2. Bar-Matthews, M., Ayalon, A., and Kaufman, A., 1997. Late Quaternary paleoclimate in the Eastern Mediterranean region from stable isotope analysis of speleothems at Soreq Cave, Israel. Quaternary Research, 47(2), 155–168.CrossRefGoogle Scholar
  3. Bar-Matthews, M., Ayalon, A., Kaufman, A., and Wasserburg, G. J., 1999. The Eastern Mediterranean, paleoclimate as a reflection of regional events: Soreq cave, Israel. Earth and Planetary Science Letters, 166(1–2), 85–95.CrossRefGoogle Scholar
  4. Bar-Matthews, M., Ayalon, A., and Kaufman, A., 2000. Timing and hydrological conditions of sapropel events in the Eastern Mediterranean, as evident from speleothems, Soreq Cave, Israel. Chemical Geology, 169(1–2), 145–156.CrossRefGoogle Scholar
  5. Bar-Matthews, M., Marean, C. W., Jacobs, Z., Karkanas, P., Fisher, E. C., Herries, A. I. R., Brown, K., Williams, H. M., Bernatchez, J., Ayalon, A., and Nilssen, P. J., 2010. A high resolution and continuous isotopic speleothem record of paleoclimate and paleoenvironment from 90 to 53 ka from Pinnacle Point on the south coast of South Africa. Quaternary Science Reviews, 29(17–18), 2131–2145.CrossRefGoogle Scholar
  6. Bischoff, J. L., Soler, N., Maroto, J., and Julià, R., 1989. Abrupt Mousterian/ Aurignacian boundary at c. 40 ka bp: Accelerator 14C dates from l’Arbreda Cave (Catalunya, Spain). Journal of Archaeological Science, 16(6), 563–576.CrossRefGoogle Scholar
  7. Bischoff, J. L., Garcia, J. F., and Straus, L. G., 1992. Uranium-series isochron dating at El Castillo cave (Cantabria, Spain): the “Acheulian”/“Mousterian” question. Journal of Archaeological Science, 19(1), 49–62.CrossRefGoogle Scholar
  8. Bischoff, J. L., Ludwig, K., Garcia, J. F., Carbonell, E., Vaquero, M., Stafford, T. W., Jr., and Jull, A. J. T., 1994. Dating of the basal Aurignacian sandwich at Abric Romaní (Catalunya, Spain) by radiocarbon and uranium-series. Journal of Archaeological Science, 21(4), 541–551.CrossRefGoogle Scholar
  9. Bischoff, J. L., Shamp, D. D., Aramburu, A., Arsuaga, J. L., Carbonell, E., and Bermudez de Castro, J. M., 2003. The Sima de los Huesos hominids date to beyond U/Th equilibrium (>350 kyr) and perhaps to 400–500 kyr: new radiometric dates. Journal of Archaeological Science, 30(3), 275–280.CrossRefGoogle Scholar
  10. Bischoff, J. L., Williams, R. W., Rosenbauer, R. J., Aramburu, A., Arsuaga, J. L., García, N., and Cuenca-Bescós, G. L., 2007. High-resolution U-series dates from the Sima de los Huesos hominids yields 600+∞/–66 kyrs: implications for the evolution of the early Neanderthal lineage. Journal of Archaeological Science, 34(5), 763–770.CrossRefGoogle Scholar
  11. Blackwell, B., Schwarcz, H. P., and Debénath, A., 1983. Absolute dating of hominids and Palaeolithic artifacts of the cave of La Chaise-de-Vouthon (Charente), France. Journal of Archaeological Science, 10(6), 493–513.CrossRefGoogle Scholar
  12. Bourdon, B., Henderson, G. M., Lundstrom, C. C., and Turner, S. (eds.), 2003. Uranium-Series Geochemistry. Washington, DC/St. Louis: Geochemical Society and Mineralogical Society of America. Reviews in Mineralogy and Geochemistry, Vol. 52.Google Scholar
  13. Bruxelles, L., Clarke, R. J., Maire, R., Ortega, R., and Stratford, D., 2014. Stratigraphic analysis of the Sterkfontein StW 573 Australopithecus skeleton and implications for its age. Journal of Human Evolution, 70, 36–48.CrossRefGoogle Scholar
  14. Cliff, R. A., Spötl, C., and Mangini, A., 2010. U–Pb dating of speleothems from spannagel cave, Austrian alps: a high resolution comparison with U-series ages. Quaternary Geology, 5(4), 452–458.Google Scholar
  15. Dirks, P. H. G. M., Kibii, J. M., Kuhn, B. F., Steininger, C., Churchill, S. E., Kramers, J. D., Pickering, R., Farber, D. L., Mériaux, A.-S., Herries, A. I. R., King, G. C. P., and Berger, L. R., 2010. Geological setting and age of Australopithecus sediba from Southern Africa. Science, 328(5975), 205–208.CrossRefGoogle Scholar
  16. Falguères, C., de Lumley, H., and Bischoff, J. L., 1992. U-series dates for stalagmitic flowstone E (Riss/Würm interglaciation) at Grotte du Lazaret, Nice. Quaternary Geology, 38(2), 227–233.Google Scholar
  17. Falguères, C., Yokoyama, Y., Shen, G., Bischoff, J. L., Ku, T.-L., and de Lumley, H., 2004. New U-series dates at the Caune de l’Arago, France. Journal of Archaeological Science, 31(7), 941–952.CrossRefGoogle Scholar
  18. Ford, D. C., and Williams, P. W., 2007. Karst Geomorphology and Hydrology. London: Wiley. rev. edition.CrossRefGoogle Scholar
  19. Frumkin, A., Ford, D. C., and Schwarcz, H. P., 1999. Continental oxygen isotopic record of the last 170,000 years in Jerusalem. Quaternary Research, 51(3), 317–327.CrossRefGoogle Scholar
  20. Gibbon, R. J., Pickering, T. R., Sutton, M. B., Heaton, J. L., Kuman, K., Clarke, R. J., Brain, C. K., and Granger, D. E., 2014. Cosmogenic nuclide burial dating of hominin-bearing Pleistocene cave deposits at Swartkrans, South Africa. Quaternary Geochronology, 24, 10–15.CrossRefGoogle Scholar
  21. Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M., 2012. The Geologic Timescale 2012. Amsterdam: Elsevier.Google Scholar
  22. Granger, D. E., and Muzikar, P. F., 2001. Dating sediment burial with in situ-produced cosmogenic nuclides: theory, techniques, and limitations. Earth and Planetary Science Letters, 188(1–2), 269–281.Google Scholar
  23. Green, H. S., Stringer, C. B., Collcutt, S. N., Currant, A. P., Huxtable, J., Schwarcz, H. P., Debenham, N., Embleton, C., Bull, P., Molleson, T. I., and Bevins, R. E., 1981. Pontnewydd cave in Wales – a new middle Pleistocene hominid site. Nature, 294(5843), 707–713.CrossRefGoogle Scholar
  24. Hill, C. A., and Forti, P., 1997. Cave Minerals of the World, 2nd edn. Huntsville: National Speleological Society.Google Scholar
  25. Hopley, P. J., Weedon, G. P., Marshall, J. D., Herries, A. I. R., Latham, A. G., and Kuykendall, K. L., 2007. High- and low-latitude orbital forcing of early hominin habitats in South Africa. Earth and Planetary Science Letters, 256(3–4), 419–432.CrossRefGoogle Scholar
  26. Ivanovich, M., and Harmon, R. S. (eds.), 1992. Uranium-Series Disequilibrium. Applications to Earth, Marine, and Environmental Sciences, 2nd edn. Oxford: Oxford University Press.Google Scholar
  27. Latham, A. G., and Ford, D. C., 1993. The paleomagnetism and rock magnetism of cave and karst deposits. In Aïssaoui, D. M., McNeill, D. F., and Hurley, N. F. (eds.), Applications of Paleomagnetism to Sedimentary Geology. Tulsa: Society for Sedimentary Geology. Society of Economic Paleontologists and Mineralogists Special Publication, Vol. 49, pp. 150–155.Google Scholar
  28. Latham, A. G., and Schwarcz, H. P., 1992. The petralona hominid site: uranium-series re-analysis of ‘Layer 10’ calcite and associated palaeomagnetic analyses. Archaeometry, 34(1), 135–140.CrossRefGoogle Scholar
  29. Latham, A. G., Schwarcz, H. P., Ford, D. C., and Pearce, G. W., 1979. Palaeomagnetism of stalagmite deposits. Nature, 280(5721), 383–385.CrossRefGoogle Scholar
  30. Lundberg, J., and McFarlane, D. A., 2007. Pleistocene depositional history in a periglacial terrane: a 500 k.y. Record from kents cavern, Devon, United Kingdom. Geosphere, 3(4), 199–219.CrossRefGoogle Scholar
  31. McDermott, F., 2004. Palaeo-climate reconstruction from stable isotope variations in speleothems: a review. Quaternary Science Reviews, 23(7–8), 901–918.CrossRefGoogle Scholar
  32. McFarlane, D. A., and Lundberg, J., 2005. The 19th century excavation of Kent’s Cavern, England. Journal Caveand Karst Studies, 67(1), 39–47.Google Scholar
  33. Partridge, T. C., Granger, D. E., Caffee, M. W., and Clarke, R. J., 2003. Lower Pliocene hominid remains from Sterkfontein. Science, 300(5619), 607–612.CrossRefGoogle Scholar
  34. Pickering, R., and Kramers, J. D., 2010. Re-appraisal of the stratigraphy and determination of new U–Pb dates for the Sterkfontein hominin site, South Africa. Journal of Human Evolution, 59(1), 70–86.CrossRefGoogle Scholar
  35. Pickering, R., Dirks, P. H. G. M., Jinnah, Z., de Ruiter, D. J., Churchill, S. E., Herries, A. I. R., Woodhead, J. D., Hellstrom, J. C., and Berger, L. R., 2011. Australopithecus sediba at 1.977 Ma and implications for the origins of the genus Homo. Science, 333(6048), 1421–1423.CrossRefGoogle Scholar
  36. Pike, A. W. G., Hoffmann, D. L., García-Diez, M., Pettitt, P. B., Alcolea, J., De Balbín, R., González-Sainz, C., de las Heras, C., Lasheras, J. A., Montes, R., and Zilhão, J., 2012. U-series dating of Paleolithic art in 11 caves in Spain. Science, 336(6087), 1409–1413.CrossRefGoogle Scholar
  37. Schwarcz, H. P., and Latham, A. G., 1984. Uranium-series age determination of travertines from the site of Vértesszöllös, Hungary. Journal of Archaeological Science, 11(4), 327–336.CrossRefGoogle Scholar
  38. Schwarcz, H. P., and Latham, A. G., 1989. Dirty calcites I: uranium-series dating of contaminated calcite using leachates alone. Chemical Geology Isotope Geoscience Section, 80(1), 35–43.CrossRefGoogle Scholar
  39. Schwarcz, H. P., and Skoflek, I., 1982. New dates for the Tata, Hungary archaeological site. Nature, 295(5850), 590–591.CrossRefGoogle Scholar
  40. Schwarcz, H. P., Grün, R., Latham, A. G., Mania, D., and Brunnacker, K., 1988. The Bilzingsleben archaeological site: new dating evidence. Archaeometry, 30(1), 5–17.CrossRefGoogle Scholar
  41. Sutton, M. B., Pickering, T. R., Pickering, R., Brain, C. K., Clarke, R. J., Heaton, J. L., and Kuman, K., 2009. Newly discovered fossil- and artifact-bearing deposits, uranium-series ages, and Plio-Pleistocene hominids at Swartkrans Cave, South Africa. Journal of Human Evolution, 57(6), 688–696.CrossRefGoogle Scholar
  42. Walker, J., Cliff, R. A., and Latham, A. G., 2006. U–Pb isotopic age of the StW 573 hominid from Sterkfontein, South Africa. Science, 314(5805), 1592–1594.CrossRefGoogle Scholar
  43. Warr, G. L., Herries, A. I. R., Cliff, R. A., and Latham, A. G., forthcoming. Age estimates for the australopithecine fossils at Makapansgat, Limpopo Province, South Africa. Journal of Human Evolution.Google Scholar
  44. Weninger, B., and Jöris, O., 2008. A 14C age calibration curve for the last 60 ka: the Greenland-Hulu U/Th timescale and its impact on understanding the Middle to Upper Paleolithic transition in Western Eurasia. Journal of Human Evolution, 55(5), 772–781.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Archaeology, Classics and EgyptologyLiverpool UniversityLiverpoolUK