Encyclopedia of Geoarchaeology

2017 Edition
| Editors: Allan S. Gilbert


  • Katherine A. AdelsbergerEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-4409-0_160


The scientific study of sediment and sedimentary rocks.

The study of material found at the earth’s surface and composed of unlithified rock fragments, chemical precipitates, or biogenic matter.

Sedimentology in geoarchaeology


Sediments serve as the primary matrix for most archaeological materials (Goldberg and Macphail, 2006), and they are therefore the main focus of much geoarchaeological research. Although the broader earth science definition of sedimentology includes the study and classification of sediments and sedimentary rocks, in many cases geoarchaeology deals almost exclusively with sediment alone due to the unconsolidated sedimentary nature of many late Quaternary geologic settings, the generally loosely deposited materials that make up archaeological sites themselves, and the nature of the questions geoarchaeologists commonly ask. The majority of the sedimentary concepts are the same in both geology and geoarchaeology, but those interested in...

This is a preview of subscription content, log in to check access.


  1. Adelsberger, K. A., and Smith, J. R., 2010. Paleolandscape and paleoenvironmental interpretation of spring-deposited sediments in Dakhleh Oasis, Western Desert of Egypt. Catena, 83(1), 7–22.CrossRefGoogle Scholar
  2. Álvarez, M., Godino, I. B., Balbo, A., and Madella, M., 2011. Shell middens as archives of past environments, human dispersal and specialized resource management. Quaternary International, 239(1–2), 1–7.CrossRefGoogle Scholar
  3. Andrews, J. E., 2006. Palaeoclimatic records from stable isotopes in riverine tufas: synthesis and review. Earth-Science Reviews, 75(1–4), 85–104.CrossRefGoogle Scholar
  4. Aschenbrenner, B. C., 1956. A new method of expressing particle sphericity. Journal of Sedimentary Petrology, 26(1), 15–31.Google Scholar
  5. Barber, K. E., Chambers, F. M., and Maddy, D., 2003. Holocene palaeoclimates from peat stratigraphy: macrofossil proxy climate records from three oceanic raised bogs in England and Ireland. Quaternary Science Reviews, 22(5–7), 521–539.CrossRefGoogle Scholar
  6. Barrett, P. J., 1980. The shape of rock particles, a critical review. Sedimentology, 27(3), 291–303.CrossRefGoogle Scholar
  7. Blaauw, M., and Mauquoy, D., 2012. Signal and variability within a Holocene peat bog – chronological uncertainties of pollen, macrofossil and fungal proxies. Review of Palaeobotany and Palynology, 186, 5–15.CrossRefGoogle Scholar
  8. Blott, S. J., and Pye, K., 2012. Particle size scales and classification of sediment types based on particle size distributions: review and recommended procedures. Sedimentology, 59(7), 2071–2096.CrossRefGoogle Scholar
  9. Bluck, B. J., 2011. Structure of gravel beaches and their relationship to tidal range. Sedimentology, 58(4), 994–1006.CrossRefGoogle Scholar
  10. Boggs, S., 2001. Principles of Sedimentology and Stratigraphy, 3rd edn. Upper Saddle River: Prentice Hall.Google Scholar
  11. Boggs, S., 2006. Principles of Sedimentology and Stratigraphy, 4th edn. Upper Saddle River: Prentice Hall.Google Scholar
  12. Byrne, J. V., 1963. Variations in fluvial gravel imbrication. Journal of Sedimentary Petrology, 33(2), 467–469.CrossRefGoogle Scholar
  13. Chen, J., Zhang, D. D., Wang, S., Xiao, T., and Huang, R., 2004. Factors controlling tufa deposition in natural waters at waterfall sites. Sedimentary Geology, 166(3–4), 353–366.CrossRefGoogle Scholar
  14. Crofts, R. S., 1974. A visual measure of shingle particle form for use in the field. Journal of Sedimentary Petrology, 44(3), 931–934.Google Scholar
  15. Culver, S. J., Bull, P. A., Campbell, S., Shakesby, R. A., and Whalley, B. W., 1983. Environmental discrimination based on quartz grain surface textures: a statistical investigation. Sedimentology, 30(1), 129–136.CrossRefGoogle Scholar
  16. Dachnowski, A. P., 1922. The correlation of time units and climatic changes in peat deposits of the United States and Europe. Proceedings of the National Academy of Sciences, 8(7), 225–231.CrossRefGoogle Scholar
  17. de Wet, C. B., and Davis, K., 2010. Preservation potential of microorganism morphologies in tufas, sinters, and travertines through geologic time. Palaeobiodiversity and Palaeoenvironments, 90(2), 139–152.CrossRefGoogle Scholar
  18. Deotare, B. C., Kajale, M. D., Rajaguru, S. N., Kusumgar, S., Jull, A. J. T., and Donahue, J. D., 2004. Palaeoenvironmental history of Bap-Malar and Kanod Playas of Western Rajasthan, Thar Desert. Journal of Earth System Science, 113(3), 403–425.CrossRefGoogle Scholar
  19. Dobkins, J. E., and Folk, R. L., 1970. Shape development on Tahiti-Nui. Journal of Sedimentary Petrology, 40(4), 1167–1203.Google Scholar
  20. Drummond, C. N., Patterson, W. P., and Walker, J. C. G., 1995. Climatic forcing of carbon-oxygen isotopic covariance in temperate-region marl lakes. Geology, 23(11), 1031–1034.CrossRefGoogle Scholar
  21. Drysdale, R. N., Taylor, M. P., and Ihlenfeld, C., 2002. Factors controlling the chemical evolution of travertine-depositing rivers of the Barkly karst, northern Australia. Hydrological Processes, 16(15), 2941–2962.CrossRefGoogle Scholar
  22. Fairchild, I. J., Smith, C. L., Baker, A., Fuller, L., Spӧtl, C., Mattey, D., McDermott, F., and Edinburgh Ion Microprobe Facility, 2006. Modification and preservation of environmental signals in speleothems. Earth Science Reviews, 75(1–4), 105–153.CrossRefGoogle Scholar
  23. Fernlund, J. M. R., 1998. The effect of particle form on sieve analysis: a test by image analysis. Engineering Geology, 50(1–2), 111–124.CrossRefGoogle Scholar
  24. Folk, R. L., 1966. A review of grain-size parameters. Sedimentology, 6(2), 73–93.CrossRefGoogle Scholar
  25. Folk, R. L., 1974. Petrology of Sedimentary Rocks, 2nd edn. Austin: Hemphill Publishing.Google Scholar
  26. Folk, R. L., and Ward, W. C., 1957. Brazos River bar: a study in the significance of grain size parameters. Journal of Sedimentary Petrology, 27(1), 3–26.CrossRefGoogle Scholar
  27. Ford, T. D., and Pedley, H. M., 1996. A review of tufa and travertine deposits of the world. Earth Science Reviews, 41(3–4), 117–175.CrossRefGoogle Scholar
  28. Goldberg, P., and Macphail, R. I., 2006. Practical and Theoretical Geoarchaeology. Malden: Blackwell Science.Google Scholar
  29. Gutiérrez-Zugasti, I., Andersen, S. H., Araújo, A. C., Dupont, C., Milner, N., and Monge-Soares, A. M., 2011. Shell midden research in Atlantic Europe: state of the art, research problems and perspectives for the future. Quaternary International, 239(1–2), 70–85.CrossRefGoogle Scholar
  30. Harrell, J., 1984. A visual comparator for degree of sorting in thin and plane sections. Journal of Sedimentary Petrology, 54(2), 646–650.CrossRefGoogle Scholar
  31. Helland, P. E., Huang, P.-H., and Diffendal, R. F., Jr., 1997. SEM analysis of quartz sand grain surface textures indicates alluvial/colluvial origin of the Quaternary “glacial” boulder clays at Huangshan (Yellow Mountain), East-Central China. Quaternary Research, 48(2), 177–186.CrossRefGoogle Scholar
  32. Herbert, R. B., Jr., 1995. Precipitation of Fe oxyhydroxides and jarosite from acidic groundwater. GFF, 117(2), 81–85.CrossRefGoogle Scholar
  33. Hill, C. A., and Forti, P., 1997. Cave Minerals of the World, 2nd edn. Huntsville: National Speleological Society. 463 p.Google Scholar
  34. Kieniewicz, J. M., and Smith, J. R., 2007. Hydrologic and climatic implications of stable isotope and minor element analyses of authigenic calcite silts and gastropod shells from a mid-Pleistocene pluvial lake, Western Desert, Egypt. Quaternary Research, 68(3), 431–444.CrossRefGoogle Scholar
  35. Krinsley, D. H., and Doornkamp, J. C., 1973. Atlas of Quartz Sand Surface Textures. Cambridge: Cambridge University Press.Google Scholar
  36. Krinsley, D., and Takahashi, T., 1962. Application of electron microscopy to geology. Transactions of the New York Academy of Sciences, 25(1), 3–22.CrossRefGoogle Scholar
  37. Krumbein, W. C., 1934. Size frequency distributions of sediments. Journal of Sedimentary Petrology, 4(2), 65–77.Google Scholar
  38. Krumbein, W. C., 1941. Measurement and geological significance of shape and roundness of sedimentary particles. Journal of Sedimentary Petrology, 11(2), 64–72.Google Scholar
  39. Larsen, N. K., and Piotrowski, J. A., 2003. Fabric pattern in a basal till succession and its significance for reconstructing subglacial processes. Journal of Sedimentary Research, 73(5), 725–734.CrossRefGoogle Scholar
  40. Lauritzen, S.-E., 2005. Reconstructing Holocene climate records from speleothems. In Mackay, A., Battarbee, R., Birks, J., and Oldfield, F. (eds.), Global Change in the Holocene. London: Arnold, pp. 242–263.Google Scholar
  41. Lindsey, D. A., Langer, W. H., and Van Gosen, B. S., 2007. Using pebble lithology and roundness to interpret gravel provenance in piedmont fluvial systems of the Rocky Mountains, USA. Sedimentary Geology, 199(3–4), 223–232.CrossRefGoogle Scholar
  42. Lojen, S., Trkov, A., Ščančar, J., Vázquez-Navarro, J. A., and Cukrov, N., 2009. Continuous 60-year stable isotopic and earth-alkali element records in a modern laminated tufa (Jaruga, River Krka, Croatia): implications for climate reconstruction. Chemical Geology, 258(3–4), 242–250.CrossRefGoogle Scholar
  43. Long, D. T., Fegan, N. E., McKee, J. D., Lyons, W. B., Hines, M. E., and Macumber, P. G., 1992. Formation of alunite, jarosite and hydrous iron oxides in a hypersaline system: Lake Tyrrell, Victoria, Australia. Chemical Geology, 96(1–2), 183–202.CrossRefGoogle Scholar
  44. Marshall, J. R., Bull, P. A., and Morgan, R. M., 2012. Energy regimes for aeolian sand grain surface textures. Sedimentary Geology, 253–254, 17–24.CrossRefGoogle Scholar
  45. Middleton, G. V. (ed.), 2003. Encyclopedia of Sediments and Sedimentary Rocks. Dordrecht: Kluwer Academic Publishers.Google Scholar
  46. Parkash, B., and Middleton, G. V., 1970. Downcurrent textural changes in Ordovician turbidite graywackes. Sedimentology, 14(3–4), 259–293.CrossRefGoogle Scholar
  47. Pentecost, A., 1993. British travertines: a review. Proceedings of the Geologists’ Association, 104(1), 23–39.CrossRefGoogle Scholar
  48. Pentecost, A., 2005. Travertine. Berlin: Springer.Google Scholar
  49. Pettijohn, F. J., 1949. Sedimentary Rocks. New York: Harper.Google Scholar
  50. Pizzuto, J. E., Webb, R. H., Griffiths, P. G., Elliott, J. G., and Melis, T. S., 1999. Entrainment and transport of cobbles and boulders from debris fans. In Webb, R. H., Schmidt, J. C., Marzolf, G. R., and Valdez, R. A. (eds.), The Controlled Flood in Grand Canyon. Washington, DC: American Geophysical Union. Geophysical Monograph, Vol. 110, pp. 53–70.CrossRefGoogle Scholar
  51. Pola, M., Gandin, A., Tuccimei, P., Soligo, M., Deiana, R., Fabbri, P., and Zampieri, D., 2014. A multidisciplinary approach to understanding carbonate deposition under tectonically controlled hydrothermal circulation: a case study from a recent travertine mound in the Euganean hydrothermal system, northern Italy. Sedimentology, 61(1), 172–199.CrossRefGoogle Scholar
  52. Powers, M. C., 1953. A new roundness scale for sedimentary particles. Journal of Sedimentary Petrology, 23(2), 117–119.Google Scholar
  53. Renaut, R. W., and Tiercelin, J.-J., 1994. Lake Bogoria, Kenya Rift Valley – a sedimentological overview. In Renaut, R. W., and Last, W. M. (eds.), Sedimentology and Geochemistry of Modern and Ancient Saline Lakes. Tulsa: Society for Sedimentary Geology. SEPM Special Publication, Vol. 50, pp. 101–124.CrossRefGoogle Scholar
  54. Renaut, R. W., Owen, R. B., Jones, B., Tiercelin, J.-J., Tarits, C., Ego, J. K., and Konhauser, K. O., 2013. Impact of lake-level changes on the formation of thermogene travertine in continental rifts: evidence from Lake Bogoria, Kenya Rift Valley. Sedimentology, 60(2), 428–468.CrossRefGoogle Scholar
  55. Renfrew, C., and Bahn, P., 2008. Archaeology: Theory, Methods and Practice, 5th edn. London: Thames and Hudson.Google Scholar
  56. Rusnak, G. A., 1957. The orientation of sand grains under conditions of “unidirectional” fluid flow: 1. Theory and experiment. Journal of Geology, 65(4), 384–409.CrossRefGoogle Scholar
  57. Russell, R. D., and Taylor, R. E., 1937. Roundness and shape of Mississippi River sands. Journal of Geology, 45(3), 225–267.CrossRefGoogle Scholar
  58. Schwertmann, U., Carlson, L., and Murad, E., 1987. Properties of iron oxides in two Finnish lakes in relation to the environment of their formation. Clays and Clay Minerals, 35(4), 297–304.CrossRefGoogle Scholar
  59. Smith, J. R., Giegengack, R., Schwarcz, H. P., McDonald, M. M. A., Kleindienst, M. R., Hawkins, A. L., and Churcher, C. S., 2004. A reconstruction of Quaternary pluvial environments and human occupations using stratigraphy and geochronology of fossil-spring tufas, Kharga Oasis, Egypt. Geoarchaeology, 19(5), 407–439.CrossRefGoogle Scholar
  60. Smith, J. R., Hawkins, A. L., Asmerom, Y., Polyak, V., and Giegengack, R., 2007. New age constraints on the Middle Stone Age occupations of Kharga Oasis, Western Desert, Egypt. Journal of Human Evolution, 52(6), 690–701.CrossRefGoogle Scholar
  61. Sneed, E. D., and Folk, R. L., 1958. Pebbles in the Lower Colorado River, Texas: a study in particle morphogenesis. Journal of Geology, 66(2), 114–150.CrossRefGoogle Scholar
  62. Soil Conservation Service, 1975. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys. Washington, DC: Soil conservation Service, US Department of Agriculture. USDA/SCS Agricultural Handbook, Vol. 436.Google Scholar
  63. Stein, J. K., and Farrand, W. R. (eds.), 2001. Sediments in Archaeological Context. Salt Lake City: University of Utah Press.Google Scholar
  64. Sweeting, M. M., 1972. Karst Landforms. London: Macmillan.Google Scholar
  65. Timireva, S. N., and Velichko, A. A., 2006. Depositional environments of the Pleistocene loess-soil series inferred from sand grain morphoscopy – a case study of the East European Plain. Quaternary International, 152–153, 136–145.CrossRefGoogle Scholar
  66. Tooth, A. F., and Fairchild, I. J., 2003. Soil and karst aquifer hydrological controls on the geochemical evolution of speleothem-forming drip waters, Crag Cave, southwest Ireland. Journal of Hydrology, 273(1–4), 51–68.CrossRefGoogle Scholar
  67. Udden, J. A., 1898. The Mechanical Composition of Wind Deposits. Rock Island: Lutheran Augustana Book Concern. Augustana Library Publication, Vol. 1.Google Scholar
  68. US Division of Soil Survey, 1993. Soil Survey Manual. Washington, DC: US Department of Agriculture. US Department of Agriculture Handbook, Vol. 18.Google Scholar
  69. Van den Berg, M., Huisman, H., Kars, H., van Haaster, H., and Kool, J., 2010. Assessing in situ preservation of archaeological wetland sites by chemical analysis of botanical remains and micromorphology. In Bloemers, T., Kars, H., van der Valk, A., and Wijnen, M. (eds.), The Cultural Landscape and Heritage Paradox: Protection and Development of the Dutch Archaeological-Historical Landscape and its European Dimension. Amsterdam: Amsterdam University Press, pp. 161–176.Google Scholar
  70. Wadell, H., 1932. Volume, shape and roundness of rock particles. Journal of Geology, 40(5), 443–451.CrossRefGoogle Scholar
  71. Wentworth, C. K., 1919. A laboratory and field study of cobble abrasion. Journal of Geology, 27(7), 507–521.CrossRefGoogle Scholar
  72. Wentworth, C. K., 1922. A scale of grade and class terms for clastic sediments. Journal of Geology, 30(5), 377–392.CrossRefGoogle Scholar
  73. Wilson, M. J., 2004. Weathering of the primary rock-forming minerals: processes, products and rates. Clay Minerals, 39(3), 233–266.CrossRefGoogle Scholar
  74. Wolfe, M. J., 1967. An electron microscope study of the surface texture of sand grains from a basal conglomerate. Sedimentology, 8(3), 239–247.CrossRefGoogle Scholar
  75. Yu, X., Zhou, W., Liu, X., Xian, F., Liu, Z., Zheng, Y., and An, Z., 2010. Peat records of human impacts on the atmosphere in northwest China during the late Neolithic and Bronze Ages. Palaeogeography, Palaeoclimatology, Palaeoecology, 286(1–2), 17–22.CrossRefGoogle Scholar
  76. Zhang, D. D., Zhang, Y., Zhu, A., and Cheng, X., 2001. Physical mechanisms of river waterfall tufa (travertine) formation. Journal of Sedimentary Research, Section A: Sedimentary Petrology and Processes, 71(1), 205–216.CrossRefGoogle Scholar
  77. Zheng, G., Lang, Y., Miyahara, M., Nozaki, T., and Haruaki, T., 2007. Iron oxide precipitate in seepage of groundwater from a landslide slip zone. Environmental Geology, 51(8), 1455–1464.CrossRefGoogle Scholar
  78. Zingg, T., 1935. Beitrag zur Schotteranalyse: Die Schotteranalyse und ihre Anwendung auf die Glattalschotter. Schweizerische Mineralogische und Petrografische Mitteilungen, 15, 39–140.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Environmental Studies, Douglas and Maria Bayer Chair in Earth ScienceKnox CollegeGalesburgUSA