Encyclopedia of Geoarchaeology

2017 Edition
| Editors: Allan S. Gilbert

Shell Middens

  • Katherine SzabóEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-4409-0_146


Conchero (Spain); Escargotières (land snail middens); Kitchen midden; Køkkenmødding (Denmark); Sambaqui (Brazil)


A refuse deposit in which molluscan shell is one of the major constituent materials.

Identifying shell middens

Shell middens are refuse deposits composed solely or primarily of molluscan shells. Although they are most frequently thought of as comprising the refuse of ancient human meals, shell waste piles can also be accumulated through other cultural behaviors such as building and industrial activities. The recognition of shell middens in the landscape is not always a simple matter. Some nonhuman animals (e.g., crabs, octopuses, and muskrats) create shell middens. Additionally, a range of natural coastal and landscape processes can generate piles of molluscan shell prompting debates as to their origin. Thus, from a geoarchaeological perspective, the task of differentiating cultural middens from natural geomorphologic shell-bearing features and nonhuman...

This is a preview of subscription content, log in to check access.


  1. Allen, J., Holdaway, S., and Fullagar, R., 1997. Identifying specialisation, production and exchange in the archaeological record: the case of shell bead manufacture on Motupore Island, Papua. Archaeology in Oceania, 32(1), 13–38.CrossRefGoogle Scholar
  2. Ambrose, R. F., 1983. Midden formation by octopuses: the role of biotic and abiotic factors. Marine Behaviour and Physiology, 10(2), 137–144.CrossRefGoogle Scholar
  3. Anderson, A. J., 1981. A model of prehistoric collecting on the rocky shore. Journal of Archaeological Science, 8(2), 109–120.CrossRefGoogle Scholar
  4. Anderson, A. J., 2005. Subpolar settlement in South Polynesia. Antiquity, 79(306), 791–800.Google Scholar
  5. Andrews, M. V., Gilbertson, D. D., Kent, M., and Mellars, P. A., 1985. Biometric studies of morphological variation in the intertidal gastropod Nucella lapillus (L): environmental and palaeoeconomic significance. Journal of Biogeography, 12(1), 71–87.CrossRefGoogle Scholar
  6. Antczak, A. T., Posada, J. M., Shapira, D., Antczak, M. M., Cipriani, R., and Montaño, I. A., 2008. A history of human impact on the queen conch (Strombus gigas) in Venezuela. In Antczak, A. T., and Cipriani, R. (eds.), Early Human Impact on Megamolluscs. Oxford: Archaeopress. British Archaeological Reports, International Series 1865, pp. 49–64.Google Scholar
  7. Ascough, P. L., Cook, G. T., Dugmore, A. J., Scott, E. M., and Freeman, S. P. H. T., 2005. Influence of mollusc species on marine DELTA R determinations. Radiocarbon, 47(3), 433–440.CrossRefGoogle Scholar
  8. Ascough, P. L., Cook, G. T., Dugmore, A. J., and Scott, E. M., 2007. The North Atlantic marine reservoir effect in the early Holocene: implications for defining and understanding MRE values. Nuclear Instruments and Methods in Physics Research B, 259(1), 438–447.CrossRefGoogle Scholar
  9. Attenbrow, V., 1991. Shell bed or shell midden. Australian Archaeology, 34, 3–21.CrossRefGoogle Scholar
  10. Augustinus, P. G. E. F., 1989. Cheniers and chenier plains: a general introduction. Marine Geology, 90(4), 219–229.CrossRefGoogle Scholar
  11. Bailey, G. N., 1975. The role of molluscs in coastal economies: the results of midden analysis in Australia. Journal of Archaeological Science, 2(1), 45–62.CrossRefGoogle Scholar
  12. Bailey, G. N., 1977. Shell mounds, shell middens, and raised beaches in the Cape York Peninsula. Mankind, 11(2), 132–143.Google Scholar
  13. Bailey, G. N., 1991. Hens’ eggs and cockle shells: Weipa shell mounds reconsidered. Archaeology in Oceania, 26(1), 21–23.CrossRefGoogle Scholar
  14. Bailey, G. N., and Flemming, N. C., 2008. Archaeology of the continental shelf: marine resources, submerged landscapes and underwater archaeology. Quaternary Science Reviews, 27(23–24), 2153–2165.CrossRefGoogle Scholar
  15. Bailey, G. N., Chappell, J., and Cribb, R., 1994. The origin of Anadara shell mounds at Weipa, North Queensland, Australia. Archaeology in Oceania, 29(2), 69–80.Google Scholar
  16. Barber, I., 2013. Molluscan mulching at the margins: investigating the development of a South Island Māori variation on Polynesian hard mulch agronomy. Archaeology in Oceania, 48(1), 40–52.CrossRefGoogle Scholar
  17. Bar-Yosef Mayer, D. E., 1997. Neolithic shell bead production in Sinai. Journal of Archaeological Science, 24(2), 97–111.CrossRefGoogle Scholar
  18. Beck, M. E., 2007. Midden formation and intrasite chemical patterning in Kalinga, Philippines. Geoarchaeology, 22(4), 453–475.CrossRefGoogle Scholar
  19. Bird, D. W., and Bliege Bird, R., 2000. The ethnoarchaeology of juvenile foragers: shellfishing strategies among Meriam children. Journal of Anthropological Archaeology, 19(4), 461–476.CrossRefGoogle Scholar
  20. Bocek, B., 1986. Rodent ecology and burrowing behavior: predicted effects on archaeological site formation. American Antiquity, 51(3), 589–603.CrossRefGoogle Scholar
  21. Brumby, S., and Yoshida, H., 1994. ESR dating of mollusc shell: investigations with modern shell of four species. Quaternary Science Reviews, 13(2), 157–162.CrossRefGoogle Scholar
  22. Burchell, M., Cannon, A., Hallmann, N., Schwarcz, H. P., and Schöne, B. R., 2013. Refining estimates for the season of shellfish collection on the Pacific Northeast Coast: applying high-resolution stable oxygen isotope analysis and sclerochronology. Archaeometry, 55(2), 258–276.CrossRefGoogle Scholar
  23. Çakırlar, C., 2009. Mollusk Shells in Troia, Yenibademli, and Ulucak: An Archaeomalacological Approach to the Environment and Economy of the Aegean. Oxford: Archaeopress. British Archaeological Reports, International Series 2051.Google Scholar
  24. Çakırlar, C., and Becks, R., 2009. Murex dye production at Troia: assessment of archaeomalacological data from old and new excavations. Studia Troica, 18, 87–103.Google Scholar
  25. Campbell, G., 2008. Beyond means to meaning: using distributions of shell shapes to reconstruct past collecting strategies. Environmental Archaeology, 13(2), 111–121.CrossRefGoogle Scholar
  26. Cannon, A., 2000. Settlement and sea-levels on the central coast of British Columbia: evidence from shell midden cores. American Antiquity, 65(1), 67–77.CrossRefGoogle Scholar
  27. Cannon, A., and Burchell, M., 2009. Clam growth-stage profiles as a measure of harvest intensity and resource management on the central coast of British Columbia. Journal of Archaeological Science, 36(4), 1050–1060.CrossRefGoogle Scholar
  28. Carannante, A., 2011. Purple-dye industry shell waste recycling in the Bronze Age Aegean? Stoves and murex shells at Minoan Monastiraki (Crete, Greece). In Çakırlar, C. (ed.), Archaeomalacology Revisited: Non-dietary Use of Molluscs in Archaeological Settings. Oxford: Oxbow, pp. 9–18.Google Scholar
  29. Catteral, C. P., and Poiner, I. R., 1987. The potential impact of human gathering on shellfish populations, with reference to some NE Australian intertidal flats. Oikos, 50(1), 114–122.CrossRefGoogle Scholar
  30. Ceci, L., 1984. Shell midden deposits as coastal resources. World Archaeology, 16(1), 62–74.CrossRefGoogle Scholar
  31. Chazottes, V., Le Campion-Alsumard, T., and Peyrot-Clausade, M., 1995. Bioerosion rates on coral reefs: interactions between macroborers, microborers and grazers (Moorea, French Polynesia). Palaeogeography Palaeoclimatology Palaeoecology, 113(2–4), 189–198.CrossRefGoogle Scholar
  32. Christensen, C. C., and Kirch, P. V., 1981. Nonmarine mollusks from archaeological sites on Tikopia, southeastern Solomon Islands. Pacific Science, 35(1), 75–88.Google Scholar
  33. Cipriani, R., and Antczak, A. T., 2008. Qualitative effects of pre-Hispanic harvesting on queen conch: the tale of a structured matrix model. In Antczak, A. T., and Cipriani, R. (eds.), Early Human Impact on Megamolluscs. Oxford: Archaeopress. British Archaeological Reports, International Series 1865, pp. 95–110.Google Scholar
  34. Claassen, C., 1991. Normative thinking and shell-bearing sites. In Schiffer, M. B. (ed.), Archaeological Method and Theory. Tucson: University of Arizona Press, Vol. 3, pp. 249–298.Google Scholar
  35. Claassen, C., 1998. Shells. Cambridge: Cambridge University Press. Cambridge Manuals in Archaeology.Google Scholar
  36. Claassen, C., 2010. The U.S. freshwater shell button industry. In Álvarez-Fernández, E., and Carvajal-Contreras, D. R. (eds.), Not only Food: Marine, Terrestrial and Freshwater Molluscs in Archaeological Sites: Proceedings of the 2nd Meeting of the ICAZ Archaeomalacology Working Group (Santander, February 19th–22nd 2008). Donostia: Sociedad de Ciencias/Aranzadi Zientzia Elkartea. Munibe Suplemento 31, pp. 302–309.Google Scholar
  37. Demarchi, B., Williams, M. G., Milner, N., Russell, N., Bailey, G., and Penkman, K., 2011. Amino acid racemization dating of marine shells: a mound of possibilities. Quaternary International, 239(1–2), 114–124.CrossRefGoogle Scholar
  38. Deshpande-Mukherjee, A., 2008. Archaeomalacological research in India with special reference to early historic exploitation of the sacred conch shell (Turbinella pyrum) in western Deccan. In Antczak, A. T., and Cipriani, R. (eds.), Early Human Impact on Megamolluscs. Oxford: Archaeopress. British Archaeological Reports, International Series 1865, pp. 209–222.Google Scholar
  39. Dimitrijević, V., and Tripković, B., 2006. Spondylus and Glycymeris bracelets: trade reflections at neolithic Vinča-Belo Brdo. Documenta Praehistorica, 33, 237–252.CrossRefGoogle Scholar
  40. Dupont, C., 2011. The dog whelk Nucella lapillus and dye extraction activities from the Iron age to the middle ages along the Atlantic coast of France. Journal of Island and Coastal Archaeology, 6(1), 3–23.CrossRefGoogle Scholar
  41. Dupont, C., Schulting, R., and Tresset, A., 2007. Prehistoric shell middens along the French Atlantic façade: the use of marine and terrestrial resources in the diets of coastal human populations. In Milner, N., Craig, O. E., and Bailey, G. N. (eds.), Shell Middens in Atlantic Europe. Oxford: Oxbow, pp. 123–135.Google Scholar
  42. Dwyer, P. G., Minnegal, M., and Thomson, J., 1985. Odds and ends: bower birds as taphonomic agents. Australian Archaeology, 21, 1–10.Google Scholar
  43. Edens, C., 1999. Khor Ile-Sud, Qatar: the archaeology of late bronze age purple-dye production in the Arabian Gulf. Iraq, 61, 71–88.CrossRefGoogle Scholar
  44. Eggins, S. M., Grün, R., McCulloch, M. T., Pike, A. W. G., Chappell, J., Kinsley, L., Mortimer, G., Shelley, M., Murray-Wallace, C. V., Spötl, C., and Taylor, L., 2005. In situ U-series dating by laser-ablation multi-collector ICPMS: new prospects for quaternary geochronology. Quaternary Science Reviews, 24(23–24), 2523–2538.CrossRefGoogle Scholar
  45. Erlandson, J. M., 1988. The role of shellfish in prehistoric economies: a protein perspective. American Antiquity, 53(1), 102–109.CrossRefGoogle Scholar
  46. Erlandson, J. M., Rick, T. C., Collins, P. W., and Guthrie, D. A., 2007. Archaeological implications of a bald eagle nesting site at Ferrelo point, San Miguel Island, California. Journal of Archaeological Science, 34(2), 255–271.CrossRefGoogle Scholar
  47. Estevez, J., Piana, E., Schiavini, A., and Juan-Muns, N., 2001. Archaeological analysis of shell middens in the Beagle Channel, Tierra del Fuego Island. International Journal of Osteoarchaeology, 11(1–2), 24–33.CrossRefGoogle Scholar
  48. Evans, J. G., 1972. Land Snails in Archaeology; With Special Reference to the British Isles. London/New York: Seminar Press.Google Scholar
  49. Faulkner, P., 2009. Focused, intense and long-term: evidence for granular ark (Anadara granosa) exploitation from late Holocene shell mounds of Blue Mud Bay, northern Australia. Journal of Archaeological Science, 36(3), 821–834.CrossRefGoogle Scholar
  50. Faulkner, P., 2010. Morphometric and taphonomic analysis of granular ark (Anadara granosa) dominated shell deposits of Blue Mud Bay, northern Australia. Journal of Archaeological Science, 37(8), 1942–1952.CrossRefGoogle Scholar
  51. Ford, P. J., 1992. Interpreting the grain size distributions of archaeological shell. In Stein, J. K. (ed.), Deciphering a Shell Midden. San Diego: Academic Press, pp. 283–325.Google Scholar
  52. Gifford-Gonzales, D. P., Damrosch, D. B., Damrosch, D. R., Pryor, J., and Thunen, R. L., 1985. The third dimension in site structure: an experiment in trampling and vertical dispersal. American Antiquity, 50(3), 803–818.CrossRefGoogle Scholar
  53. Giovas, C. M., 2009. The shell game: analytic problems in archaeological mollusc quantification. Journal of Archaeological Science, 36(7), 1557–1564.CrossRefGoogle Scholar
  54. Godino, I. B., Álvarez, M., Balbo, A., Zurro, D., Madella, M., Villagrán, X., and French, C., 2011. Towards high-resolution shell midden archaeology: experimental and ethnoarchaeology in Tierra del Fuego (Argentina). Quaternary International, 239(1–2), 125–134.CrossRefGoogle Scholar
  55. Graham, M. H., Dayton, P. K., and Erlandson, J. M., 2003. Ice ages and ecological transitions on temperate coasts. Trends in Ecology and Evolution, 18(1), 33–40.CrossRefGoogle Scholar
  56. Grayson, D. K., 1984. Quantitative Zooarchaeology: Topics in the Analysis of Archaeological Faunas. Orlando: Academic Press.Google Scholar
  57. Gutiérrez Zugasti, F. I., 2011. Shell fragmentation as a tool for quantification and identification of taphonomic processes in archaeomalacological analysis: the case of the Cantabrian region (northern Spain). Archaeometry, 53(3), 614–630.CrossRefGoogle Scholar
  58. Habu, J., Matsui, A., Yamamoto, N., and Kanno, T., 2011. Shell midden archaeology in Japan: aquatic food acquisition and long-term change in the Jomon culture. Quaternary International, 239(1–2), 19–27.CrossRefGoogle Scholar
  59. Ham, L. C., 1982. Seasonality, Shell Midden Layers, and Coast Salish Subsistence Activities at the Crescent Beach Site, DgRr 1. Unpublished Doctoral Thesis, University of British Columbia.Google Scholar
  60. Hanagarth, W., 1993. Acerca de la geoecología de las sabanas del Beni en el noreste de Bolivia. La Paz: Instituto de Ecología.Google Scholar
  61. Hanson, J. M., Mackay, W. C., and Prepas, E. E., 1989. Effect of size-selective predation by muskrats (Ondatra zebithicus) on a population of unionid clams (Anodonta grandis simpsoniana). Journal of Animal Ecology, 58(1), 15–28.CrossRefGoogle Scholar
  62. Henderson, W. G., Anderson, L. C., and McGimsey, C. R., 2002. Distinguishing natural and archaeological deposits: stratigraphy, taxonomy, and taphonomy of Holocene shell-rich accumulations from the Louisiana Chenier Plain. Palaios, 17(2), 192–205.CrossRefGoogle Scholar
  63. Henshilwood, C., Nilssen, P., and Parkington, J., 1994. Mussel drying and food storage in the late Holocene, SW Cape, South Africa. Journal of Field Archaeology, 21(1), 103–109.Google Scholar
  64. Hogg, A. G., Higham, T. F. G., and Dahm, J., 1998. 14C dating of modern marine and estuarine shellfish. Radiocarbon, 40(2), 975–984.CrossRefGoogle Scholar
  65. International Commission on Zoological Nomenclature. 1999. International Code of Zoological Nomenclature, 4th edn. London: The International Trust for Zoological Nomenclature, Natural History Museum. URL: http://www.nhm.ac.uk/hosted-sites/iczn/code/
  66. Jerardino, A., 1997. Changes in shellfish species composition and mean shell size from a late-Holocene record of the west coast of Southern Africa. Journal of Archaeological Science, 24(11), 1031–1044.CrossRefGoogle Scholar
  67. Jerardino, A., 2012. Large shell middens and hunter-gatherer resource intensification along the west coast of South Africa: the Elands Bay case study. Journal of Island and Coastal Archaeology, 7, 76–101.CrossRefGoogle Scholar
  68. Jerardino, A., and Navarro, R., 2008. Shell morphometry of seven limpet species from coastal shell middens in southern Africa. Journal of Archaeological Science, 35(4), 1023–1029.CrossRefGoogle Scholar
  69. Jones, R., and Allen, J., 1978. Caveat excavator: a sea bird midden on Steep Head Island, north west Tasmania. Australian Archaeology, 8, 142–145.Google Scholar
  70. Jones, T. L., Kennett, D. J., Kennett, J. P., and Codding, B. F., 2008. Seasonal stability in late Holocene shellfish harvesting on the central California coast. Journal of Archaeological Science, 35(8), 2286–2294.CrossRefGoogle Scholar
  71. Keegan, W. F., 1984. Pattern and process in Strombus gigas tool replication. Journal of New World Archaeology, 6(2), 15–25.Google Scholar
  72. Kennett, D. J., and Voorhies, B., 1996. Oxygen isotope analysis of archaeological shells to detect seasonal use of wetlands on the southern Pacific coast of Mexico. Journal of Archaeological Science, 23(5), 689–704.CrossRefGoogle Scholar
  73. Keough, M. J., and Quinn, G. P., 1991. Causality and the choice of measurements for detecting human impacts in marine environments. Australian Journal of Marine and Freshwater Research, 42(5), 539–554.CrossRefGoogle Scholar
  74. Kidwell, S. M., and Holland, S. M., 1991. Field description of coarse bioclastic fabrics. Palaios, 6(4), 426–434.CrossRefGoogle Scholar
  75. Kidwell, S. M., Fürsich, F. T., and Aigner, T., 1986. Conceptual framework for the analysis and classification of fossil concentrations. Palaios, 1(3), 228–238.CrossRefGoogle Scholar
  76. Koike, H., 1979. Seasonal dating and the valve-pairing technique in shell-midden analysis. Journal of Archaeological Science, 6(1), 63–74.CrossRefGoogle Scholar
  77. Koren, Z. C., 2005. The first optimal all-Murex all-natural purple dyeing in the Eastern Mediterranean in a millennium and a half and its colorimetric characterization. In Kirby, J. (ed.), Dyes in History and Archaeology 20. London: Archetype Publications, pp. 136–149.Google Scholar
  78. Kowalewski, M., and Labarbera, M., 2004. Actualistic taphonomy: death, decay, and disintegration in contemporary settings. Palaios, 19(5), 423–427.CrossRefGoogle Scholar
  79. Langstroth Plotkin, R., 1996. Forest Islands in an Amazonian Savanna of Northeastern Bolivia. Unpublished PhD thesis, University of Wisconsin-Madison.Google Scholar
  80. Lombardo, U., Szabó, K., Capriles, J. M., May, J.-H., Amelung, W., Hutterer, R., Lehndorff, E., Plotzki, A., and Veit, H., 2013. Early and middle Holocene hunter-gatherer occupations in western Amazonia: the hidden shell middens. PLoS One, 8(8), e72746, doi:10.1371/journal.pone.0072746.CrossRefGoogle Scholar
  81. Lubell, D., 2004. Prehistoric edible land snails in the circum-Mediterranean: the archaeological evidence. In Brugal, J.-P., and Desse, J. (eds.), Petits animaux et sociétés humaines. Du complément alimentaire aux ressources utilitaires, XXIVe rencontres internationales d’archéologie et d’histoire d’Antibes. Antibes: Éditions APCDA, pp. 77–98.Google Scholar
  82. Lubell, D., Hassan, F. A., Gautier, A., and Ballais, J.-L., 1976. The Capsian escargotières: an interdisciplinary study elucidates Holocene ecology and subsistence in North Africa. Science, 191(4230), 910–920.CrossRefGoogle Scholar
  83. Lyman, R. L., 2008. Quantitative Paleozoology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  84. Malm, T., 2009. Women of the coral gardens: the significance of marine gathering in Tonga. SPC, 25, 2–15. Traditional Marine Resource Management and Knowledge Information Bulletin.Google Scholar
  85. Mannino, M. A., Spiro, B. F., and Thomas, K. D., 2003. Sampling shells for seasonality: oxygen isotope analysis on shell carbonates of the inter-tidal gastropod Monodonta lineata (da Costa) from populations across its modern range and from a Mesolithic site in southern Britain. Journal of Archaeological Science, 30(6), 667–679.CrossRefGoogle Scholar
  86. Marquardt, W. H., 2010. Shell mounds in the Southeast: middens, monuments, temple mounds, rings, or works? American Antiquity, 75(3), 551–570.CrossRefGoogle Scholar
  87. Martindale, A., Letham, B., McLaren, D., Archer, D., Burchell, M., and Schöne, B. R., 2009. Mapping of subsurface shell midden components through percussion coring: examples from the Dundas Islands. Journal of Archaeological Science, 36(7), 1565–1575.CrossRefGoogle Scholar
  88. Mason, R. D., Peterson, M. L., and Tiffany, J. A., 1998. Weighing vs. counting: measurement reliability and the California school of midden analysis. American Antiquity, 63(2), 303–324.CrossRefGoogle Scholar
  89. Medway, L., 1960. Niah Shell – 1954–8 (a preliminary report). Sarawak Museum Journal, 9(15–16 new series), 368–379.Google Scholar
  90. Meehan, B., 1977. Man does not live by calories alone: the role of shellfish in coastal cuisine. In Allen, J., Golson, J., and Jones, R. (eds.), Sunda and Sahul: Prehistoric Studies in Southeast Asia, Melanesia and Australia. New York: Academic Press, pp. 493–531.Google Scholar
  91. Meehan, B., 1982. Shell Bed to Shell Midden. Canberra: Australian Institute of Aboriginal Studies.Google Scholar
  92. Miracle, P. T., 1995. Broad-Spectrum Adaptations Re-examined: Hunter-Gatherer Responses to Late Glacial Environmental Changes in the Eastern Adriatic. Unpublished PhD thesis, University of Michigan.Google Scholar
  93. Moholy-Nagy, H., 1997. Middens, construction fill, and offerings: evidence for the organization of classic period craft production at Tikal, Guatemala. Journal of Field Archaeology, 24(3), 293–313.Google Scholar
  94. Molodkov, A., 2012. Cross-check of the dating results obtained by ESR and IR-OSL methods: implication for the Pleistocene palaeoenvironmental reconstructions. Quaternary Geochronology, 10, 188–194.CrossRefGoogle Scholar
  95. Morey, D. F., and Crothers, G. M., 1998. Clearing up clouded waters: palaeoenvironmental analysis of freshwater mussel assemblages from the Green River shell middens, western Kentucky. Journal of Archaeological Science, 25(9), 907–926.CrossRefGoogle Scholar
  96. Morrison, M., 2013. Niche production strategies and shell matrix site variability at Albatross Bay, Cape York Peninsula. Archaeology in Oceania, 48(2), 78–91.CrossRefGoogle Scholar
  97. Muckle, R. J., 1985. Archaeological Considerations of Bivalve Shell Taphonomy. Unpublished MA thesis, Simon Fraser University.Google Scholar
  98. Nigra, B. T., and Arnold, J. E., 2013. Explaining the monopoly in shell-bead production on the channel Islands: drilling experiments with four lithic raw materials. Journal of Archaeological Science, 40(10), 3647–3659.CrossRefGoogle Scholar
  99. Nixon, M., Maconnachie, E., and Howell, P. G. T., 1980. The effects on shells of drilling by Octopus. Journal of Zoology (London), 191(1), 75–88.CrossRefGoogle Scholar
  100. Onat, A. R. B., 1985. The multifunctional use of shellfish remains: from garbage to community engineering. Northwest Anthropological Research Notes, 19(2), 201–207.Google Scholar
  101. Panda, A., and Misra, M. K., 2007. Traditional methods of mollusc shell collection for lime preparation in East coast of India. Indian Journal of Traditional Knowledge, 6(4), 549–558.Google Scholar
  102. Parkington, J., 2012. Mussels and mongongo nuts: logistical visits to the Cape west coast, South Africa. Journal of Archaeological Science, 39(5), 1521–1530.CrossRefGoogle Scholar
  103. Peacock, E., 2000. Assessing bias in archaeological shell assemblages. Journal of Field Archaeology, 27(2), 183–196.Google Scholar
  104. Peacock, E., and Seltzer, J. L., 2008. A comparison of multiple proxy data sets for paleoenvironmental conditions as derived from freshwater bivalve (Unionid) shell. Journal of Archaeological Science, 35(9), 2557–2565.CrossRefGoogle Scholar
  105. Penkman, K. E. H., Kaufman, D. S., Maddy, D., and Collins, M. J., 2008. Closed-system behaviour of the intra-crystalline fraction of amino acids in mollusc shells. Quaternary Geochronology, 3(1–2), 2–25.CrossRefGoogle Scholar
  106. Petchey, F., Ulm, S., David, B., McNiven, I. J., Asmussen, B., Tomkins, H., Richards, T., Rowe, C., Leavesley, M., Mandui, H., and Stanisic, J., 2012. 14C marine reservoir variability in herbivores and deposit-feeding gastropods from an open coastline, Papua New Guinea. Radiocarbon, 54(3–4), 967–978.CrossRefGoogle Scholar
  107. Peterson, N., 1973. Camp-site location amongst Australian hunter-gatherers: archaeological and ethnographic evidence for a key determinant. Archaeology and Physical Anthropology in Oceania, 8(3), 173–193.Google Scholar
  108. Piperno, D. R., 1985. Phytolith taphonomy and distributions in archeological sediments from Panama. Journal of Archaeological Science, 12(4), 247–267.CrossRefGoogle Scholar
  109. Porcasi, J. F., 2011. More on mollusks: trans-Holocene shellfish exploitation on the California coast. Journal of Island and Coastal Archaeology, 6(3), 398–420.CrossRefGoogle Scholar
  110. Poteate, A. S., and Fitzpatrick, S. M., 2013. Testing the efficacy and reliability of common zooarchaeological sampling strategies: a case study from the Caribbean. Journal of Archaeological Science, 40(10), 3693–3705.CrossRefGoogle Scholar
  111. Quitmyer, I. R., Jones, D. S., and Arnold, W. S., 1997. The sclerochronology of hard clams, Mercenaria spp., from the South-Eastern U.S.A.: a method of elucidating the zooarchaeological records of seasonal resource procurement and seasonality in prehistoric shell middens. Journal of Archaeological Science, 24(9), 825–840.CrossRefGoogle Scholar
  112. Rabett, R., Appleby, J., Blyth, A., Farr, L., Gallou, A., Griffiths, T., Hawkes, J., Marcus, D., Marlow, L., Morley, M., Nguyêń, C. T., Nguyêń, V. S., Penkman, K., Reynolds, T., Stimpson, C., and Szabó, K., 2011. Inland shell midden site-formation: investigation into a late Pleistocene to early Holocene midden from Tràng An, Northern Vietnam. Quaternary International, 239(1–2), 153–169.CrossRefGoogle Scholar
  113. Reese, D. S., 1980. Industrial exploitation of Murex shells: purple-dye and lime production at Sidi Khrebish, Benghazi (Berenice). Libyan Studies, 11, 79–93.CrossRefGoogle Scholar
  114. Reese, D. S., 2010. Shells from Sarepta (Lebanon) and East Mediterranean purple-dye production. Mediterranean Archaeology and Archaeometry, 10(1), 113–141.Google Scholar
  115. Rick, T. C., 2002. Eolian processes, ground cover, and the archaeology of coastal dunes: a taphonomic case study from San Miguel Island, California, U.S.A. Geoarchaeology, 17(8), 811–833.CrossRefGoogle Scholar
  116. Ricklis, R. A., and Blum, M. D., 1997. The geoarchaeological record of Holocene sea level change and human occupation of the Texas Gulf coast. Geoarchaeology, 12(4), 287–314.CrossRefGoogle Scholar
  117. Ronen, A., 1980. The origin of the raised pelecypod beds along the Mediterranean coast of Israel. Paléorient, 6, 165–172.CrossRefGoogle Scholar
  118. Rosendahl, D., Ulm, S., and Weisler, M. I., 2007. Using foraminifera to distinguish between natural and cultural shell deposits in coastal eastern Australia. Journal of Archaeological Science, 34(10), 1584–1593.CrossRefGoogle Scholar
  119. Ruscillo, D., 2005. Reconstructing murex royal purple and biblical blue in the Aegean. In Bar-Yosef Mayer, D. (ed.), Archaeomalacology: Molluscs in Former Environments of Human Behaviour. Oxford: Oxbow Books, pp. 99–106.Google Scholar
  120. Saunders, R., and Russo, M., 2011. Coastal shell middens in Florida: a view from the Archaic period. Quaternary International, 239(1–2), 38–50.CrossRefGoogle Scholar
  121. Schweikhardt, P., Ingram, B. L., Lightfoot, K., and Luby, E., 2011. Geochemical methods for inferring seasonal occupation of an estuarine shellmound: a case study from San Francisco Bay. Journal of Archaeological Science, 38(9), 2301–2312.CrossRefGoogle Scholar
  122. Serrand, N., and Bonnissent, D., 2005. Pre-columbian Preceramic shellfish consumption and shell tool production: shell remains from Orient Bay, Saint Martin, Northern Lesser Antilles. In Bar-Yosef Mayer, D. (ed.), Archaeomalacology: Molluscs in Former Environments of Human Behaviour. Oxford: Oxbow Books, pp. 29–39.Google Scholar
  123. Shawcross, W., 1968. An investigation of prehistoric diet and economy on a coastal site at Galatea Bay, New Zealand. Proceedings of the Prehistoric Society, 33, 107–131.CrossRefGoogle Scholar
  124. Shillito, L.-M., and Matthews, W., 2013. Geoarchaeological investigations of midden-formation processes in the early to late ceramic Neolithic levels at Çatalhöyük, Turkey ca. 8550–8370 cal BP. Geoarchaeology, 28(1), 25–49.CrossRefGoogle Scholar
  125. Shillito, L.-M., Matthews, W., Almond, M. J., and Bull, I. D., 2011. The microstratigraphy of middens: capturing daily routine in rubbish at neolithic Çatalhöyük, Turkey. Antiquity, 85(329), 1024–1038.CrossRefGoogle Scholar
  126. Silliman, B. R., Layman, C. A., Geyer, K., and Zieman, J. C., 2004. Predation by the black-clawed mud crab, Panopeus herbstii, in Mid-Atlantic salt marshes: further evidence for top-down control of marsh grass production. Estuaries, 27(2), 188–196.CrossRefGoogle Scholar
  127. Spanier, E., 1986. Cannibalism in muricid snails as a possible explanation for archaeological findings. Journal of Archaeological Science, 13(5), 463–468.CrossRefGoogle Scholar
  128. Specht, J., 1985. Crabs as disturbance factors in tropical archaeological sites. Australian Archaeologist, 21, 11–18.Google Scholar
  129. Stanner, W. E. H., 1961. The Weipa shell-mounds. The Etruscan, 11, 8–12.Google Scholar
  130. Stein, J. K., 1983. Earthworm activity: a source of potential disturbance of archaeological sediments. American Antiquity, 48(2), 277–289.CrossRefGoogle Scholar
  131. Stein, J. K., 1992. Deciphering a Shell Midden. San Diego: Academic Press.Google Scholar
  132. Stein, J. K., Deo, J. N., and Phillips, L. S., 2003. Big sites – short time: accumulation rates in archaeological sites. Journal of Archaeological Science, 30(3), 297–316.CrossRefGoogle Scholar
  133. Stone, T., 1989. Origins and environmental significance of shell and earth mounds in Northern Australia. Archaeology in Oceania, 24(2), 59–64.CrossRefGoogle Scholar
  134. Stone, T., 1991. Two birds with one stone: a reply. Archaeology in Oceania, 26(1), 26–28.CrossRefGoogle Scholar
  135. Stone, T., 1995. Shell mound formation in coastal northern Australia. Marine Geology, 129(1–2), 77–100.CrossRefGoogle Scholar
  136. Suguio, K., Martin, L., and Flexor, J.-M., 1992. Paleoshorelines and the sambaquis of Brazil. In Johnson, L. L., and Stright, M. (eds.), Paleoshorelines and Prehistory: An Investigation of Method. Boca Raton: CRC Press, pp. 83–99.Google Scholar
  137. Swadling, P., 1976. Changes induced by human exploitation in prehistoric shellfish populations. Mankind, 10(3), 156–162.Google Scholar
  138. Swadling, P., and Chowning, A., 1981. Shellfish gathering at Nukalau Island, West New Britain Province, Papua New Guinea. Journal de la Société des océanistes, 37(72–73), 159–167.CrossRefGoogle Scholar
  139. Szabó, K., 2012. Terrestrial hermit crabs (Anomura: Coenobitidae) as taphonomic agents in circum-tropical coastal sites. Journal of Archaeological Science, 39(4), 931–941.CrossRefGoogle Scholar
  140. Szabó, K., (2015). Molluscan remains from the Niah Caves. In: Barker, G. (ed.), Rainforest Foraging and Farming in Island Southeast Asia: The Archaeology of the Niah Caves, Sarawak .Vol. 2, Cambridge: McDonald Institute MonographsGoogle Scholar
  141. Szabó, K., Ramirez, H., Anderson, A., and Bellwood, P., 2003. Prehistoric subsistence strategies on the Batanes Islands, northern Philippines. Bulletin of the Indo-Pacific Prehistory Association, 23, 163–171.Google Scholar
  142. Taylor, V. K., Barton, R. N. E., Bell, M., Bouzouggar, A., Collcutt, S., Black, S., and Hogue, J. T., 2011. The Epipalaeolithic (Iberomaurusian) at Grotte des Pigeons (Taforalt), Morocco: a preliminary study of the land Mollusca. Quaternary International, 244(1), 5–14.CrossRefGoogle Scholar
  143. Thakar, H. B., 2011. Intensification of shellfish exploitation: evidence of species-specific deviation from traditional expectations. Journal of Archaeological Science, 38(10), 2596–2605.Google Scholar
  144. Thomas, F. R., 2002. An evaluation of central-place foraging among mollusk gatherers in Western Kiribati, Micronesia: linking behavioral ecology with ethnoarchaeology. World Archaeology, 34(1), 182–208.CrossRefGoogle Scholar
  145. Trinkley, M., 1985. The form and function of South Carolina’s early Woodland shell rings. In Dickens, R. S., Jr., and Ward, H. T. (eds.), Structure and Process in Southeastern Archaeology. Tuscaloosa: University of Alabama Press, pp. 102–118.Google Scholar
  146. Van der Schriek, T., Passmore, D. G., Stevenson, A. C., and Rolão, J. M., 2007. The influence of environmental change on Mesolithic settlement-subsistence and shell midden formation along the lower Tagus River, Portugal. In Milner, N., Craig, O. E., and Bailey, G. N. (eds.), Shell Middens in Atlantic Europe. Oxford: Oxbow Books, pp. 165–182.Google Scholar
  147. Verdún, E., 2010. Molluscs as sedimentary components. Another perspective of analysis. In: Álvarez-Fernández, E., and Carvajal-Contreras, D. R. (eds.), Not only Food: Marine, Terrestrial and Freshwater Molluscs in Archaeological Sites: Proceedings of the 2nd Meeting of the ICAZ Archaeomalacology Working Group (Santander, February 19th–22nd 2008), Donostia: Sociedad de Ciencias/Aranzadi Zientzia Elkartea. Munibe Suplemento 31, pp. 294–301.Google Scholar
  148. Vermeij, G. J., 1995. A Natural History of Shells. Princeton: Princeton University Press.Google Scholar
  149. Villagran, X. S., Giannini, P. C. F., and DeBlasis, P., 2009. Archaeofacies analysis: using depositional attributes to identify anthropic processes of deposition in a monumental shell mound of Santa Catarina State, southern Brazil. Geoarchaeology, 24(3), 311–335.CrossRefGoogle Scholar
  150. Villagran, X. S., Balbo, A. L., Madella, M., Vila, A., and Estevez, J., 2011a. Stratigraphic and spatial variability in shell middens: Microfacies identification at the ethnohistoric site Tunel VII (Tierra del Fuego, Argentina). Archaeological and Anthropological Sciences, 3(4), 357–378.CrossRefGoogle Scholar
  151. Villagran, X. S., Klokler, D., Peixoto, S., DeBlasis, P., and Giannini, P. C. F., 2011b. Building coastal landscapes: zooarchaeology and geoarchaeology of Brazilian shell mounds. Journal of Island and Coastal Archaeology, 6(2), 211–234.CrossRefGoogle Scholar
  152. Voight, E., 1975. Studies of marine mollusca from archaeological sites: dietary preferences, environmental reconstructions and ethnological parallels. In Clason, A. T. (ed.), Archaeozoological Studies. Amsterdam: North-Holland, pp. 87–98.Google Scholar
  153. Wagner, G., Hilbert, K., Bandeira, D., Tenório, M. C., and Okumura, M. M., 2011. Sambaquis (shell mounds) of the Brazilian coast. Quaternary International, 239(1–2), 51–60.CrossRefGoogle Scholar
  154. Wandsnider, L., 1988. Experimental investigation of the effect of dune processes on archaeological remains. American Archaeology, 7(1), 18–29.Google Scholar
  155. Waselkov, G. A., 1987. Shellfish gathering and shell midden archaeology. Advances in Archaeological Method and Theory, 10, 93–210.CrossRefGoogle Scholar
  156. Whitaker, A. R., 2008. Incipient aquaculture in prehistoric California?: long-term productivity and sustainability vs. immediate returns for the harvest of marine invertebrates. Journal of Archaeological Science, 35(4), 1114–1123.CrossRefGoogle Scholar
  157. Widmer, R. J., 1989. Archaeological Research Strategies in the Investigation of Shell-Bearing Sites, a Florida Perspective. Paper presented at the Annual Meeting of the Society for American Archaeology, AtlantaGoogle Scholar
  158. Williams, M. B., and Bendremer, J., 1997. The archaeology of maize, pots, and seashells: gender dynamics in late Woodland and contact period New England. In Claassen, C., and Joyce, R. A. (eds.), Women in Prehistory: North America and Mesoamerica. Philadelphia: University of Pennsylvania Press, pp. 136–149.Google Scholar
  159. Woodroffe, C. D., and Grime, D., 1999. Storm impact and evolution of a mangrove-fringed chenier plain, Shoal Bay, Darwin, Australia. Marine Geology, 159(1–4), 303–321.CrossRefGoogle Scholar
  160. Yates, T., 1986. Studies of non-marine mollusks for the selection of shell samples for radiocarbon dating. Radiocarbon, 28(2A), 457–463.CrossRefGoogle Scholar
  161. Yerkes, R. W., 1989a. Shell bead production and exchange in prehistoric Mississippian populations. In Hayes, C. F., Ceci, L., and Bodner, C. C. (eds.), Proceedings of the 1986 Shell Bead Conference: Selected Papers. Rochester: Rochester Museum and Science Center, pp. 113–123.Google Scholar
  162. Yerkes, R. W., 1989b. Mississippian craft specialization on the American bottom. Southeastern Archaeology, 8(2), 93–106.Google Scholar
  163. Zuschin, M., Stachowitsch, M., and Stanton, R. J., Jr., 2003. Patterns and processes of shell fragmentation in modern and ancient marine environments. Earth Science Reviews, 63(1–2), 33–82.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Centre for Archaeological Science, School of Earth and Environmental SciencesUniversity of WollongongWollongongAustralia