Encyclopedia of Geoarchaeology

2017 Edition
| Editors: Allan S. Gilbert

Stable Carbon Isotopes in Soils

  • Lee C. NordtEmail author
  • Vance T. Holliday
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-4409-0_13


Stable isotopes of carbon (13C and 12C) in soil organic matter and in pedogenic carbonate provide a means of paleoenvironmental reconstruction because the ratio of these two isotopes is influenced by biological, physical, and chemical reactions. The C3 and C4 plant communities that produced the organic carbon can be identified isotopically based on the degree of discrimination against atmospheric 13CO2 during photosynthesis (the degree to which a plant favors carbon dioxide containing the lighter 12CO2 isotope).


The distribution of stable C isotopes in surface and buried soils is a powerful indicator of many kinds of pedologic and paleoenvironmental interpretations. Stable C isotope analysis of soil organic matter is commonly employed to quantify organic matter turnover rates (Balesdent and Mariotti, 1996; Bernoux et al., 1998) and to reconstruct past vegetation communities (Cerling, 1992; Cerling et al., 1993; Kelly et al., 1993; Wang et al., 1993; Nordt...

This is a preview of subscription content, log in to check access.


  1. Amundson, R. G., Chadwick, O. A., Sowers, J. M., and Doner, H. E., 1988. Relationship between climate and vegetation and the stable isotope chemistry of soils in the eastern Mojave Desert, Nevada. Quaternary Research, 29(3), 245–254.CrossRefGoogle Scholar
  2. Amundson, R., Stern, L., Baisden, T., and Wang, Y., 1998. The isotopic composition of soil and soil-respired CO2. Geoderma, 82(1–2), 83–114.CrossRefGoogle Scholar
  3. Balesdent, J., and Mariotti, A., 1996. Measurement of soil organic matter turnover using 13C abundance. In Boutton, T. W., and Yamasaki, S. (eds.), Mass Spectrometry of Soils. New York: Marcel Dekker, pp. 83–111.Google Scholar
  4. Bernoux, M., Cerri, C. C., Neill, C., and de Moraes, J. F. L., 1998. The use of stable carbon isotopes for estimating soil organic matter turnover rates. Geoderma, 82(1–3), 43–58.CrossRefGoogle Scholar
  5. Birkeland, P. W., 1999. Soils and Geomorphology, 3rd edn. New York: Oxford University Press.Google Scholar
  6. Boutton, T. W., 1991a. Stable carbon isotope ratios of natural materials. II. Atmospheric, terrestrial, marine, and freshwater environments. In Coleman, D. C., and Fry, B. (eds.), Carbon Isotope Techniques. San Diego: Academic, pp. 173–185.CrossRefGoogle Scholar
  7. Boutton, T. W., 1991b. Stable carbon isotope ratios of natural materials. I. Sample preparation and mass spectrometric analysis. In Coleman, D. C., and Fry, B. (eds.), Carbon Isotope Techniques. San Diego: Academic, pp. 155–171.CrossRefGoogle Scholar
  8. Boutton, T. W., 1996. Stable carbon isotope ratios of soil organic matter and their use as indicators of vegetation and climate change. In Boutton, T. W., and Yamasaki, S. (eds.), Mass Spectrometry of Soils. New York: Marcel Dekker, pp. 47–82.Google Scholar
  9. Boutton, T. W., Archer, S. R., Midwood, A. J., Zitzer, S. F., and Bol, R., 1998. δ13C values of soil organic carbon and their use in documenting vegetation change in a subtropical savanna ecosystem. Geoderma, 82(1–3), 5–41.CrossRefGoogle Scholar
  10. Buol, S. W., Southard, R. J., Graham, R. C., and McDaniel, P. A., 2011. Soil Genesis and Classification, 6th edn. Chichester: Wiley.CrossRefGoogle Scholar
  11. Cerling, T. E., 1984. The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth and Planetary Science Letters, 71(2), 229–240.CrossRefGoogle Scholar
  12. Cerling, T. E., 1992. Development of grasslands and savannas in East Africa during the Neogene. Palaeogeography Palaeoclimatology Palaeoecology, 97(3), 241–247.CrossRefGoogle Scholar
  13. Cerling, T. E., and Quade, J., 1993. Stable carbon and oxygen isotopes in soil carbonates. In Swart, P. K., Lohmann, K. C., McKenzie, J., and Savin, S. (eds.), Climate Change in Continental Isotopic Records. Washington, DC: American Geophysical Union. Geophysical Monograph, Vol. 78, pp. 217–231.CrossRefGoogle Scholar
  14. Cerling, T. E., Quade, J., Wang, Y., and Bowman, J. R., 1989. Carbon isotopes in soils and palaeosols as ecology and palaeoecology indicators. Nature, 341(6238), 138–139.CrossRefGoogle Scholar
  15. Cerling, T. E., Solomon, D. K., Quade, J., and Bowman, J. R., 1991. On the isotopic composition of carbon in soil carbon dioxide. Geochimica Cosmochimica et Acta, 55(11), 3403–3405.CrossRefGoogle Scholar
  16. Cerling, T. E., Wang, Y., and Quade, J., 1993. Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene. Nature, 361(6410), 344–345.CrossRefGoogle Scholar
  17. Cole, D. R., and Monger, H. C., 1994. Influence of atmospheric CO2 on the decline of C4 plants during the last deglaciation. Nature, 368(6471), 533–536.CrossRefGoogle Scholar
  18. Fredlund, G. G., and Tieszen, L. L., 1997. Phytolith and carbon isotope evidence for late quaternary vegetation and climate change in the southern Black Hills, South Dakota. Quaternary Research, 47(2), 206–217.CrossRefGoogle Scholar
  19. Hall, S. A., and Penner, W. L., 2013. Stable carbon isotopes, C3–C4 vegetation, and 12,800 years of climate change in central New Mexico, USA. Palaeogeography Palaeoclimatology Palaeoecology, 369, 272–281.CrossRefGoogle Scholar
  20. Hoefs, J., 1987. Stable Isotope Geochemistry, 3rd edn. Berlin: Springer. Minerals and Rocks, Vol. 9.CrossRefGoogle Scholar
  21. Humphrey, J. D., and Ferring, C. R., 1994. Stable isotopic evidence for latest pleistocene and holocene climatic change in north-central Texas. Quaternary Research, 41(2), 200–213.CrossRefGoogle Scholar
  22. Kelly, E. F., Yonker, C., and Marino, B., 1993. Stable carbon isotope composition of paleosols: application to holocene. In Swart, P. K., Lohmann, K. C., McKenzie, J., and Savin, S. (eds.), Climate Change in Continental Isotopic Records. Washington, DC: American Geophysical Union. Geophysical Monograph, Vol. 78, pp. 233–239.CrossRefGoogle Scholar
  23. Marino, B. D., McElroy, M. B., Salawitch, R. J., and Spaulding, W. G., 1992. Glacial-to-interglacial variations in the carbon isotopic composition of atmospheric CO2. Nature, 357(6378), 461–466.CrossRefGoogle Scholar
  24. Marion, G. M., Introne, D. S., and Van Cleve, K., 1991. The stable isotope geochemistry of CaCO3 on the Tanana River floodplain of interior Alaska, U.S.A.: composition and mechanisms of formation. Chemical Geology: Isotope Geoscience Section, 86(2), 97–110.Google Scholar
  25. Midwood, A. J., and Boutton, T. W., 1998. Soil carbonate decomposition by acid has little effect on δ13C of organic matter. Soil Biology and Biochemistry, 30(10–11), 1301–1307.CrossRefGoogle Scholar
  26. Monger, H. C., 1995. Pedology in arid lands archaeological research: an example from southern New Mexico-western Texas. In Collins, M. E., Carter, B. J., Gladfelter, B. G., and Southard, R. J. (eds.), Pedological Perspectives in Archaeological Research. Madison: Soil Science Society of America. SSSA Special Publication, Vol. 44, pp. 35–50.Google Scholar
  27. Nadelhoffer, K. J., and Fry, B., 1988. Controls on natural nitrogen-15 and carbon-13 abundances in forest soil organic matter. Soil Science Society of America Journal, 52(6), 1633–1640.CrossRefGoogle Scholar
  28. Nordt, L. C., 2001. Stable C and O isotopes in soils: applications for archaeological research. In Goldberg, P., Holliday, V. T., and Ferring, C. R. (eds.), Earth Sciences and Archaeology. New York: Kluwer/Plenum Publishers, pp. 419–448.CrossRefGoogle Scholar
  29. Nordt, L. C., Boutton, T. W., Hallmark, C. T., and Waters, M. R., 1994. Late quaternary vegetation and climate changes in central Texas based on the isotopic composition of organic carbon. Quaternary Research, 41(1), 109–120.CrossRefGoogle Scholar
  30. Nordt, L. C., Wilding, L. P., Hallmark, C. T., and Jacob, J. S., 1996. Stable carbon isotope composition of pedogenic carbonate and their use in studying pedogenesis. In Boutton, T. W., and Yamasaki, S. (eds.), Mass Spectrometry of Soils. New York: Marcel Dekker, pp. 133–154.Google Scholar
  31. Nordt, L. C., Hallmark, T. C., Wilding, L. P., and Boutton, T. W., 1998. Quantifying pedogenic carbonate accumulations using stable carbon isotopes. Geoderma, 82(1–3), 115–136.CrossRefGoogle Scholar
  32. Nordt, L., von Fischer, J., and Tieszen, L., 2007. Late quaternary temperature record from buried soils of the North American Great Plains. Geology, 35(2), 159–162.CrossRefGoogle Scholar
  33. Nordt, L., von Fischer, J., Tieszen, L., and Tubbs, J., 2008. Coherent changes in relative C4 plant productivity and climate during the late quaternary in the North American Great Plains. Quaternary Science Reviews, 27(15–16), 1600–1611.CrossRefGoogle Scholar
  34. Nordt, L. C., Collins, M., Monger, H., and Fanning, D., 2011. Entisols. In Huang, P. M. (ed.), Handbook of Soil Science, 2nd edn. Boca Raton: CRC Press, pp. 33–49–33–63.Google Scholar
  35. Quade, J., Cerling, T. E., and Bowman, J. R., 1989. Systematic variations in the carbon and oxygen isotopic composition of pedogenic carbonate along elevation transects in the southern Great Basin, United States. Geological Society of America Bulletin, 101(4), 464–475.CrossRefGoogle Scholar
  36. Teeri, J. A., and Stowe, L. G., 1976. Climatic patterns and the distribution of C4 grasses in North America. Oecologia, 23(1), 1–12.CrossRefGoogle Scholar
  37. Trumbore, S. E., 1996. Applications of accelerator mass spectrometry to soil science. In Boutton, T. W., and Yamasaki, S. (eds.), Mass Spectrometry of Soils. New York: Marcel Dekker, pp. 311–339.Google Scholar
  38. Vepraskas, M. J., 1994. Redoximorphic Features for Identifying Aquic Conditions. Raleigh: North Carolina Agricultural Research Service, North Carolina State University. Technical Bulletin, Vol. 301.Google Scholar
  39. Von Fischer, J. C., Tieszen, L. L., and Schimel, D. S., 2008. Climate controls on C3 vs. C4 productivity in North American grasslands from carbon isotope composition of soil organic matter. Global Change Biology, 14(5), 1141–1155.CrossRefGoogle Scholar
  40. Wang, Y., Cerling, T. E., and Effland, W. R., 1993. Stable isotope ratios of soil carbonate and soil organic matter as indicators of forest invasion of prairie near Ames, Iowa. Oecologia, 95(3), 365–369.CrossRefGoogle Scholar
  41. West, L. T., Drees, L. R., Wilding, L. P., and Rabenhorst, M. C., 1988. Differentiation of pedogenic and lithogenic carbonate forms in Texas. Geoderma, 43(2–3), 271–287.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of GeologyBaylor UniversityWacoUSA
  2. 2.Anthropology and Departments GeosciencesUniversity of ArizonaTucsonUSA