Encyclopedia of Geoarchaeology

2017 Edition
| Editors: Allan S. Gilbert

Shipwreck Geoarchaeology

Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-4409-0_120

Introduction

The past two decades have witnessed remarkable advances in seafloor mapping, with high-resolution acoustic imaging now routinely used in archaeological studies (e.g., Plets et al., 2011; Westley et al., 2011). Technological and methodological advances in acoustic imaging and digital rendering now permit shipwreck sites and individual artifacts to be imaged at centimetric resolution in tens or hundreds of meters of water (Quinn et al., 2005). Beyond using acoustics as merely a prospection tool for locating wreck sites, researchers are increasingly exploiting the quantitative aspects of these data, for example, using time-lapse multi-beam echo-sounder (MBES) bathymetric surveys to develop accretion-erosion plots (Quinn and Boland, 2010) and using MBES backscatter data to identify shipwrecks remotely (Masetti and Calder, 2012).

In response to the 1992 Valetta European Convention on the Protection of the Archaeological Heritage and the 2001 UNESCO Convention on the Protection...

This is a preview of subscription content, log in to check access.

Bibliography

  1. Anstey, N. A., 1981. Signal Characteristics and Instrument Specifications, 2nd edn. Berlin: Gebrüder Borntraeger.Google Scholar
  2. Arnott, S. H. L., Dix, J. K., Best, A. I., and Gregory, D. J., 2005. Imaging of buried archaeological materials: the reflection properties of archaeological wood. Marine Geophysical Researches, 26(2–4), 135–144.CrossRefGoogle Scholar
  3. Bull, J. M., Quinn, R., and Dix, J. K., 1998. Reflection coefficient calculation from marine high resolution seismic reflection (Chirp) data and application to an archaeological case study. Marine Geophysical Researches, 20(1), 1–11.CrossRefGoogle Scholar
  4. Caston, G. F., 1979. Wreck marks: indicators of net sand transport. Marine Geology, 33(3–4), 193–204.CrossRefGoogle Scholar
  5. Dix, J. K., Lambkin, D. O., Thomas, M. D., and Cazenave, P. W., 2007. Modelling exclusion zones for marine aggregate dredging. English Heritage Aggregate Levy Sustainability Fund Project 3365 Final Report (www.ads.adhs.ac.uk). Southampton: School of Ocean and Earth Science, Southampton University.
  6. Gearhart, R., 2011. Archaeological interpretation of marine magnetic data. In Catsambis, A., Ford, B., and Hamilton, D. L. (eds.), The Oxford Handbook of Maritime Archaeology. Oxford: Oxford University Press, pp. 90–113.Google Scholar
  7. Gregory, D., 1995. Experiments into the deterioration characteristics of materials on the Duart Point wreck site: an interim report. International Journal of Nautical Archaeology, 24(1), 61–65.CrossRefGoogle Scholar
  8. Hennings, I., and Herbers, D., 2010. A theory of the Ka band radar imaging mechanism of a submerged wreck and associated bed forms in the southern North Sea. Journal of Geophysical Research: Oceans, 115(C10), C10047.CrossRefGoogle Scholar
  9. Lawrence, M. J., and Bates, C. R., 2001. Acoustic ground discrimination techniques for submerged archaeological site investigations. Marine Technology Society Journal, 35(4), 65–73.CrossRefGoogle Scholar
  10. Lurton, X., 2010. An Introduction to Underwater Acoustics: Principles and Applications, 2nd edn. Heidelberg: Springer.CrossRefGoogle Scholar
  11. Manders, M., Gregory, D. J., and Richards, V., 2008. The in situ preservation of archaeological sites underwater: an evaluation of some techniques. In May, E., Jones, M., and Mitchell, J. (eds.), Heritage, Microbiology and Science: Microbes, Monuments and Maritime Materials. Cambridge: RSC Publishing. Royal Society of Chemistry (Great Britain), Special Publication, Vol. 315, pp. 179–203.Google Scholar
  12. Masetti, G., and Calder, B. R., 2012. Remote identification of a shipwreck site from MBES backscatter. Journal of Environmental Management, 111, 44–52.CrossRefGoogle Scholar
  13. McNinch, J. E., Wells, J. T., and Trembanis, A. C., 2006. Predicting the fate of artefacts in energetic, shallow marine environments: an approach to site management. International Journal of Nautical Archaeology, 35(2), 290–309.CrossRefGoogle Scholar
  14. Passaro, S., 2010. Marine electrical resistivity tomography for shipwreck detection in very shallow water: a case study from Agropoli (Salerno, southern Italy). Journal of Archaeological Science, 37(8), 1989–1998.CrossRefGoogle Scholar
  15. Plets, R., 2013. Underwater survey and acoustic detection and characterization of archaeological materials. In Menotti, F., and O’Sullivan, A. (eds.), The Oxford Handbook of Wetland Archaeology. Oxford: Oxford University Press, pp. 433–449.Google Scholar
  16. Plets, R. M. K., Dix, J. K., and Best, A. I., 2008. Mapping of the buried Yarmouth Roads wreck, Isle of Wight, UK, using a Chirp sub-bottom profiler. International Journal of Nautical Archaeology, 37(2), 360–373.CrossRefGoogle Scholar
  17. Plets, R. M. K., Dix, J. K., Adams, J. R., Bull, J. M., Henstock, T. J., Gutowski, M., and Best, A. I., 2009. The use of a high-resolution 3D Chirp sub-bottom profiler for the reconstruction of the shallow water archaeological site of the Grace Dieu (1439), River Hamble, UK. Journal of Archaeological Science, 36(2), 408–418.CrossRefGoogle Scholar
  18. Plets, R., Quinn, R., Forsythe, W., Westley, K., Bell, T., Benetti, S., McGrath, F., and Robinson, R., 2011. Using multibeam echo-sounder data to identify shipwreck sites: archaeological assessment of the Joint Irish Bathymetric Survey data. International Journal of Nautical Archaeology, 40(1), 87–98.CrossRefGoogle Scholar
  19. Quinn, R., 2006. The role of scour in shipwreck site formation processes and the preservation of wreck-associated scour signatures in the sedimentary record – evidence from seabed and sub-surface data. Journal of Archaeological Science, 33(10), 1419–1432.CrossRefGoogle Scholar
  20. Quinn, R., 2011. Acoustic remote sensing in maritime archaeology. In Catsambis, A., Ford, B., and Hamilton, D. L. (eds.), The Oxford Handbook of Maritime Archaeology. Oxford: Oxford University Press, pp. 68–89.Google Scholar
  21. Quinn, R., and Boland, D., 2010. The role of time-lapse bathymetric surveys in assessing morphological change at shipwreck sites. Journal of Archaeological Science, 37(11), 2938–2946.CrossRefGoogle Scholar
  22. Quinn, R., Bull, J. M., and Dix, J. K., 1997. Imaging wooden artefacts using Chirp sources. Archaeological Prospection, 4(1), 25–35.CrossRefGoogle Scholar
  23. Quinn, R., Adams, J. R., Dix, J. K., and Bull, J. M., 1998. The Invincible (1758) site – an integrated geophysical assessment. International Journal of Nautical Archaeology, 27(2), 126–138.Google Scholar
  24. Quinn, R., Cooper, A. J. A. G., and Williams, B., 2000. Marine geophysical investigation of the inshore coastal waters of Northern Ireland. International Journal of Nautical Archaeology, 29(2), 294–298.CrossRefGoogle Scholar
  25. Quinn, R., Dean, M., Lawrence, M., Liscoe, S., and Boland, D., 2005. Backscatter responses and resolution considerations in archaeological side-scan sonar surveys: a control experiment. Journal of Archaeological Science, 32(8), 1252–1264.CrossRefGoogle Scholar
  26. Saunders, R. D., 2005. Seabed Scour Emanating from Submerged Three Dimensional Objects: Archaeological Case Studies. Unpublished PhD thesis, University of Southampton.Google Scholar
  27. Schiffer, M. B., 1987. Formation Processes of the Archaeological Record. Albuquerque: University of New Mexico Press.Google Scholar
  28. Smyth, T. A. G., and Quinn, R., 2014. The role of computational fluid dynamics in understanding shipwreck site formation processes. Journal of Archaeological Science, 45, 220–225.CrossRefGoogle Scholar
  29. Sumer, B. M., Christiansen, N., and Fredsøe, J., 1997. The horseshoe vortex and vortex shedding around a vertical wall-mounted cylinder exposed to waves. Journal of Fluid Mechanics, 332, 41–70.Google Scholar
  30. Sumer, B. M., Whitehouse, R. J. H., and Tørum, A., 2001. Scour around coastal structures: a summary of recent research. Coastal Engineering, 44(2), 153–190.CrossRefGoogle Scholar
  31. Testik, F. Y., Voropayev, S. I., and Fernando, H. J. S., 2005. Flow around a short horizontal bottom cylinder under steady and oscillatory flows. Physics of Fluids, 17(4), 47–103.CrossRefGoogle Scholar
  32. Tian-Yuan Shih, P., Chen, Y.-H., and Chen, J.-C., 2014. Historic shipwreck study in Dongsha Atoll with bathymetric LiDAR. Archaeological Prospection, 21(2), 139–146.CrossRefGoogle Scholar
  33. Voropayev, S. I., Testik, F. Y., Fernando, H. J. S., and Boyer, D. L., 2003. Burial and scour around short cylinder under progressive shoaling waves. Ocean Engineering, 30(13), 1647–1667.CrossRefGoogle Scholar
  34. Ward, I. A. K., Larcombe, P., and Veth, P., 1998. Towards new process-orientated models for describing wreck disintegration – an example using the Pandora wreck. Bulletin of the Australian Institute for Maritime Archaeology, 22, 109–114.Google Scholar
  35. Ward, I. A. K., Larcombe, P., and Veth, P., 1999a. A new process-based model for wreck site formation. Journal of Archaeological Science, 26(5), 561–570.CrossRefGoogle Scholar
  36. Ward, I. A. K., Larcombe, P., Brinkman, R., and Carter, R. M., 1999b. Sedimentary processes and the Pandora wreck, Great Barrier Reef, Australia. Journal of Field Archaeology, 26(1), 41–53.Google Scholar
  37. Westley, K., Quinn, R., Forsythe, W., Plets, R., Bell, T., Benetti, S., McGrath, F., and Robinson, R., 2011. Mapping submerged landscapes using multibeam bathymetric data: a case study from the north coast of Ireland. International Journal of Nautical Archaeology, 40(1), 99–112.CrossRefGoogle Scholar
  38. Whitehouse, R., 1998. Scour at Marine Structures: A Manual for Practical Applications. London: Thomas Telford.CrossRefGoogle Scholar
  39. Whitehouse, R. J. S., Sutherland, J., and Harris, J. M., 2011. Evaluating scour at marine gravity structures. Maritime Engineering, 164(MA4), 143–157.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Centre for Maritime Archaeology, School of Environmental SciencesUniversity of UlsterColeraineUK