Encyclopedia of Natural Hazards

2013 Edition
| Editors: Peter T. Bobrowsky


Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-4399-4_56


Seismic sea-wave; Tidal wave (obsolete)


Tsunami. From Japanese tsu, harbor, and nami, wave. A wave, or series of waves, generated when a large volume of water is vertically/horizontally displaced by an impulsive disturbance such as an earthquake, landslide, or volcanic eruption. Tsunami are distinguished from regular sea waves by their long wavelength and period. “Tsunami” and “tsunamis” are both used for the plural in English. There is no pluralizing suffix “s” used in the Japanese language.

Tsunami run-up height. The elevation above sea level at a point along the maximum inundation extent of a tsunami. The sea level datum should be specified; often the ambient sea level at the time of the tsunami is used.

Tsunami run-up distance. The horizontal distance from the coast line to a point along the maximum inundation extent of a tsunami.

Tsunami wave height. The height of a tsunami wave, measured either relative to the ambient sea level or from the peak to the trough...

This is a preview of subscription content, log in to check access.


  1. Atwater, B. F., Musumi-Rokkaku, S., Satake, K., Tsuji, Y., Ueda, K., and Yamaguchi, D. K., 2005. The Orphan Tsunami of 1700. Seattle, WA: University of Washington Press.Google Scholar
  2. Bilek, S. L., and Lay, T., 2002. Tsunami earthquakes possibly widespread manifestations of frictional conditional stability. Geophysical Research Letters, 29, 1673.CrossRefGoogle Scholar
  3. Borrero, J. C., 2005. Field survey of northern Sumatra and Banda Aceh, Indonesia after the tsunami and earthquake of 26 December 2004. Seismological Research Letters, 76, 312.CrossRefGoogle Scholar
  4. Bryant, E., 2001. Tsunami; the Underrated Hazard. New York: Cambridge University Press.Google Scholar
  5. Choowong, M., Murakoshi, N., Hisada, K. I., Charusiri, P., Charoentitirat, T., Chutakositkanon, V., Jankaew, K., Kanjanapayont, P., and Phantuwongraj, S., 2008. 2004 Indian Ocean tsunami inflow and outflow at Phuket, Thailand. Marine Geology, 248(3–4), 179–192.CrossRefGoogle Scholar
  6. Collot, J.-Y., Lewis, K., Lamarche, G., and Lallemand, S., 2001. The giant Ruatoria debris avalanche on the northern Hikurangi margin, New Zealand; results of oblique seamount subduction. Journal of Geophysical Research, 106, 19.CrossRefGoogle Scholar
  7. Federal Emergency Managemeny Agency (FEMA), 2008. Guidelines for design of structures for vertical evacuation from tsunamis. FEMA P646. 158p.Google Scholar
  8. Fine, I. V., Rabinovich, A. B., Bornhold, B. D., Thomson, R. E., and Kulikov, E. A., 2005. The Grand Banks landslide-generated tsunami of November 18, 1929: preliminary analysis and numerical modeling. Marine Geology, 215, 45.CrossRefGoogle Scholar
  9. Fritz, H. M., Blount, C., Sokoloski, R., Singleton, J., Fuggle, A., McAdoo, B. G., Moore, A., Grass, C., and Tate, B., 2007. Hurricane Katrina storm surge distribution and field observations on the Mississippi Barrier Islands. Estuarine, Coastal and Shelf Science, 74, 12–20.CrossRefGoogle Scholar
  10. Geist, E. L., 1999. Local tsunamis and earthquake source parameters. Advances in Geophysics, 39, 117.CrossRefGoogle Scholar
  11. Gica, E., Spillane, M., Titov, V. V., Chamberlin, C., and Newman, J. C., 2008. Development of the forecast propagation database for NOAA’s short-term inundation forecast for tsunamis (SIFT). NOAA Technical Memorandum OAR PMEL-139, 89 pp.Google Scholar
  12. Gonzalez, F. I., Milburn, H. M., Bernard, E. N., and Newman, J. C., 1998. Deep-ocean assessment and reporting of tsunamis (DART®): brief overview and status report. In Proceedings of the International Workshop on Tsunami Disaster Mitigation January 19–22 1998, Tokyo.Google Scholar
  13. Gregg, C. E., Houghton, B. F., Paton, D., Lachman, R., Lachman, J., Johnston, D. M., and Wongbusarakum, S., 2006. Natural warning signs of tsunamis: human sensory experience and response to the 2004 Great Sumatra earthquake and tsunami in Thailand. Earthquake Spectra, 22, 671–691.CrossRefGoogle Scholar
  14. Gregg, C. E., Houghton, B. F., Paton, D., Johnston, D. M., Swanson, D. A., and Yanagi, B. S., 2007. Tsunami warnings: understanding in Hawai’i. Natural Hazards, 40, 71–87.CrossRefGoogle Scholar
  15. Haflidason, H., Sejrup, H. P., Nygård, A., Mienert, J., Bryn, P., Lien, R., Forsberg, C. F., Berg, K., and Masson, D., 2004. The storegga slide: architecture, geometry and slide development. Marine Geology, 213, 201.CrossRefGoogle Scholar
  16. Heezen, B. C., and Ewing, W. M., 1952. Turbidity currents and submarine slumps, and the 1929 Grand Banks [Newfoundland] earthquake. American Journal of Science, 250, 849.CrossRefGoogle Scholar
  17. Johnston, D., Paton, D., Crawford, G. L., Ronan, K., Houghton, B., and Burgelt, P., 2005. Measuring tsunami preparedness in coastal Washington, United States. Natural Hazards, 35, 173–184.CrossRefGoogle Scholar
  18. Jonientz-Trisler, C., Simmons, R. S., Yanagi, B. S., Crawford, G. L., Darienzo, M., Eisner, R. K., Petty, E., and Priest, G. R., 2005. Planning for tsunami-resilient communities. Natural Hazards, 35, 121–139.CrossRefGoogle Scholar
  19. Kanamori, H., 1972. Mechanism of tsunami earthquakes. Physics of the Earth and Planetary Interiors, 6, 346–359.CrossRefGoogle Scholar
  20. Latter, J. H., 1981. Tsunamis of volcanic origin; summary of causes, with particular reference to Krakatoa, 1883. Bulletin Volcanologique, 44, 467.CrossRefGoogle Scholar
  21. Liu, P. L. F., Cho, Y.-S., Briggs, M. J., Synolakis, C. E., and Kanoglu, U., 1995. Run-up of solitary waves on circular island. Journal of Fluid Mechanics, 302, 259–285.CrossRefGoogle Scholar
  22. Locat, J., and Lee, H. J., 2000. Submarine landslides: advances and challenges. iN Proceedings of the 8th International Symposium on Landslides, June 2000, Cardiff.Google Scholar
  23. Lockridge, P. A., 1990. Nonseismic phenomena in the generation and augmentation of tsunamis. Natural Hazards, 3, 403.CrossRefGoogle Scholar
  24. Matusutomi, H., Sakakiyama, T., Nugroho, S., and Matsuyama, M., 2006. Aspects of inundated flow due to the 2004 Indian Ocean tsunami. Coastal Engineering Journal, 48, 167–195.CrossRefGoogle Scholar
  25. McCaffrey, R., 2008. Global frequency of magnitude 9 earthquakes. Geology, 36, 263.CrossRefGoogle Scholar
  26. Miller, D. J., 1960. Giant waves in Lituya Bay Alaska. Geological Survey Professional Paper 354-C.Google Scholar
  27. Mofjeld, H. O., Titov, V. V., Gonzalez, F. I., and Newman, J. C., 2000. Analytical theory of tsunami wave scattering in the open ocean with application to the North Pacific. NOAA Technical Memorandum OAR PMEL-116.Google Scholar
  28. Monserrat, S., Vilibic, I., and Rabinovich, A. B., 2006. Meteotsunamis: atmospherically induced destructive ocean waves in the tsunami frequency band. Natural Hazards and Earth System Sciences, 6, 1035–1051.CrossRefGoogle Scholar
  29. Moore, J. G., Clague, D. A., Holcomb, R. T., Lipman, P. W., Normark, W. R., and Torresan, M. E., 1989. Prodigious submarine landslides on the Hawaiian Ridge. Journal of Geophysical Research, 94, 17.Google Scholar
  30. National Tsunami Hazard Mitigation Program (NTHMP), 2001. Designing for tsunamis: seven principles for planning and designing for tsunami hazard. NTHMP. 60p.Google Scholar
  31. NGDC, 2008. national geophysical data center, tsunami data and information. http://www.ngdc.noaa.gov/hazard/tsu.shtml.
  32. NOAA, USGS, FEMA, NSF, Alaska, California, Hawaii, Oregon, and Washington.Google Scholar
  33. NTL, 2010. Novosibirsk Tsunami Laboratory, Historical Tsunami Database for the World Ocean. http://tsun.sscc.ru/nh/tsunami.php.
  34. Okada, Y., 1985. Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75, 1135.Google Scholar
  35. Oregon Emergency Management and the Oregon Separtment of Geology and Mineral Industries (OEM&ODGAMI), 2001. Tsunami Warning Systems and Procedures Guidance for Local Officials. Oregon Department of Geology and Mineral Industries ODGAMI Special Paper 35. 41p.Google Scholar
  36. Paton, D., Houghton, B. F., Gregg, C. E., Gill, D. A., Ritchie, L. A., McIvor, D., Larin, P., Meinhold, S., Horan, J., and Johnston, D. M., 2008. Managing tsunami risk in coastal communities: Identifying predictors of preparedness. Australian Journal of Emergency Management, 23, 4–9.Google Scholar
  37. Power, W. L., and Downes, G. L., 2009. Tsunami hazard assessment. In Connor, C. B., Chapman, N. A., and Connor, L. J. (eds.), Volcanic and Tectonic Hazard Assessment for Nuclear Facilities. Cambridge: Cambridge University Press, pp. 276–306.CrossRefGoogle Scholar
  38. Prasartritha, T., Tungsiripat, R., and Warachit, P., 2008. The revisit of 2004 tsunami in Thailand: characteristics of wounds. International Wound Journal, 5, 8–19.CrossRefGoogle Scholar
  39. Reese, S., Cousins, W. J., Power, W. L., Palmer, N. G., Tejakusuma, I. G., and Nugrahadi, S., 2007. Tsunami vulnerability of buildings and people in South Java: field observations after the July 2006 Java tsunami. Natural Hazards and Earth System Sciences, 7(5), 573–589.CrossRefGoogle Scholar
  40. Roberts, S. G., Nielsen, O. M., and Jakeman, J., 2008. Simulation of tsunami and flash floods. In Bock, H. G., Kostina, E., Phu, H. X., and Rannacher, R. (eds.), Modeling, Simulation and Optimization of Complex Processes. Berlin/Heidelberg: Springer, pp. 489–498.CrossRefGoogle Scholar
  41. Stein, S., and Okal, E. A., 2007. Ultralong period seismic study of the December 2004 indian ocean earthquake and implications for regional tectonics and the subduction process. Bulletin of the Seismological Society of America, 97, S279.CrossRefGoogle Scholar
  42. Tang, Z., Lindell, M. K., Prater, C. S., and Brody, S. D., 2008. Measuring tsunami planning capacity on U.S. pacific coast. Natural Hazards Review, 9, 91–100.CrossRefGoogle Scholar
  43. Verbeek, R. D. M., 1884. The Krakatoa eruption. Nature, 30, 10.CrossRefGoogle Scholar
  44. Wang, X., and Liu, P. L.-F., 2006. An analysis of 2004 Sumatra earthquake fault plane mechanisms and Indian Ocean tsunami. Journal of Hydraulic Research, 44(2), 147–154.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Earthquakes, Volcanoes and TectonicsGNS ScienceLower HuttNew Zealand
  2. 2.GNS ScienceLower HuttNew Zealand